Advertisement

Results of a 2-week novel robotic rehabilitation program in 18 children with prior hemispherectomy

  • Saman Hazany
    Correspondence
    Corresponding author at: Department of Radiology, Neuroradiology Division; Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Second Floor Imaging, Los Angeles, CA 90033, USA.
    Affiliations
    Department of Neuroradiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Second Floor Imaging, Los Angeles, CA 90033, USA

    Rancho Los Amigos National Rehabilitation Center, 7601 Imperial Highway, Downey, CA 90242, USA
    Search for articles by this author
  • Neelesh Bagrodia
    Affiliations
    Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
    Search for articles by this author
  • Remy Chu Jr
    Affiliations
    Rancho Los Amigos National Rehabilitation Center, 7601 Imperial Highway, Downey, CA 90242, USA
    Search for articles by this author
  • Susan Shaw
    Affiliations
    Rancho Los Amigos National Rehabilitation Center, 7601 Imperial Highway, Downey, CA 90242, USA

    Department of Neurology, Keck School of Medicine, University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90089, USA
    Search for articles by this author

      Highlights

      • Clinically meaningful and statistically significant improvements in motor function and behavior observed following a novel robotic rehabilitation two-week program in 18 patients with prior hemispherectomy.
      • Training camps enhance patient and parent confidence in task performance.
      • Rehabilitation related improvement in motor function and behavior years after hemispherectomy procedure suggest continued long-term neuroplasticity.

      Abstract

      Background

      Partial preservation of sensory and motor functions in the contralateral extremities after hemispherectomy is likely secondary to cortical reorganization of the remaining hemisphere and can be improved by rehabilitation. This study aims to investigate behavioral changes that may occur after a 2-week novel robotic rehabilitation program in 18 children with prior anatomic hemispherectomy. Other conventional rehabilitation methods were also reviewed and compared.

      Methods

      This study examined the impact of a novel robotic rehabilitation 2-week program on 18 hemispherectomy patients (average age 14.3 ± 3.9 years; age at hemispherectomy 5.6 ± 4.5 years).

      Results

      Statistically significant improvements were seen in the six-minute walk test (29 m, p < 0.001), Canadian Occupational Performance Measure performance (1.64 points, p = 0.002) and satisfaction (2.49 points, p = 0.001), and individual perceived performance on survey (1.72 points, p = 0.042). Fifteen patients showed improvement in the upper extremity Fugl-Meyer scores with an average increase of 3 points (p = 0.006).

      Conclusion

      This study demonstrates clinically meaningful and statistically significant improvements in motor function and behavior following a novel robotic rehabilitation two-week program.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McGovern R.A.
        • Moosa N.V.
        • Jehi L.
        • Busch R.
        • Ferguson L.
        • Gupta A.
        • et al.
        Hemispherectomy in adults and adolescents: Seizure and functional outcomes in 47 patients.
        Epilepsia. 2019; 60: 2416-2427
        • Moosa A.N.V.
        • Jehi L.
        • Marashly A.
        • Cosmo G.
        • Lachhwani D.
        • Wyllie E.
        • et al.
        Long-term functional outcomes and their predictors after hemispherectomy in 115 children.
        Epilepsia. 2013; 54: 1771-1779
        • Chugani H.T.
        • Müller R.A.
        • Chugani D.C.
        Functional brain reorganization in children.
        Brain Dev. 1996; 18: 347-356https://doi.org/10.1016/0387-7604(96)00032-0
        • Baca C.B.
        • Pieters H.C.
        • Iwaki T.J.
        • Mathern G.W.
        • Vickrey B.G.
        “A journey around the world”: Parent narratives of the journey to pediatric resective epilepsy surgery and beyond.
        Epilepsia. Jun 2015; 56: 822-832https://doi.org/10.1111/epi.12988
        • Gallagher A.
        • Jambaqué I.
        • Lassonde M.
        Cognitive outcome of surgery.
        Handb Clin Neurol. 2013; 111: 797-802https://doi.org/10.1016/B978-0-444-52891-9.00082-8
        • van Schooneveld M.M.
        • Jennekens-Schinkel A.
        • van Rijen P.C.
        • Braun K.P.
        • van Nieuwenhuizen O.
        Hemispherectomy: a basis for mental development in children with epilepsy.
        Epileptic Disord. Mar 2011; 13: 47-55https://doi.org/10.1684/epd.2011.0403
        • Boshuisen K.
        • van Schooneveld M.M.J.
        • Leijten F.S.S.
        • de Kort G.A.P.
        • van Rijen P.C.
        • Gosselaar P.H.
        • et al.
        Contralateral MRI abnormalities affect seizure and cognitive outcome after hemispherectomy.
        Neurology. 2010; 75: 1623-1630
        • Lippé S.
        • Bulteau C.
        • Dorfmuller G.
        • Audren F.
        • Delalande O.
        • Jambaqué I.
        Cognitive outcome of parietooccipital resection in children with epilepsy.
        Epilepsia. 2010; 51: 2047-2057https://doi.org/10.1111/j.1528-1167.2010.02651.x
        • de Bode S.
        • Mathern G.W.
        • Bookheimer S.
        • Dobkin B.
        Locomotor training remodels fMRI sensorimotor cortical activations in children after cerebral hemispherectomy.
        Neurorehabil Neural Repair. 2007; 21: 497-508https://doi.org/10.1177/1545968307299523
        • Fritz S.L.
        • Rivers E.D.
        • Merlo A.M.
        • Reed A.D.
        • Mathern G.D.
        • De Bode S.
        Intensive mobility training postcerebral hemispherectomy: early surgery shows best functional improvements.
        Eur J Phys Rehabil Med. 2011; 47: 569-577
        • de Bode S.
        • Fritz S.L.
        • Weir-Haynes K.
        • Mathern G.W.
        Constraint-induced movement therapy for individuals after cerebral hemispherectomy: a case series.
        Phys Ther. 2009; 89: 361-369https://doi.org/10.2522/ptj.20070240
      1. Robert MT, Ferre CL, Chin KY, et al. Intensive Bimanual Intervention for Children Who Have Undergone Hemispherectomy: A Pilot Study. Pediatr Phys Ther. 07 01 2021;33(3):120-127. doi:10.1097/PEP.0000000000000804.

        • Otte W.M.
        • van der Marel K.
        • van Meer M.PA.
        • van Rijen P.C.
        • Gosselaar P.H.
        • Braun K.PJ.
        • et al.
        Altered contralateral sensorimotor system organization after experimental hemispherectomy: a structural and functional connectivity study.
        J Cereb Blood Flow Metab. 2015; 35: 1358-1367
        • Govindan R.M.
        • Brescoll J.
        • Chugani H.T.
        Cerebellar pathway changes following cerebral hemispherectomy.
        J Child Neurol. 2013; 28: 1548-1554https://doi.org/10.1177/0883073812455101
        • Jadhav T.
        • Cross J.H.
        Surgical approaches to treating epilepsy in children.
        Curr Treat Options Neurol. 2012; 14: 620-629https://doi.org/10.1007/s11940-012-0203-8
        • Yu T.
        • Zhang G.
        • Kohrman M.H.
        • Wang Y.
        • Cai L.
        • Shu W.
        • et al.
        A retrospective study comparing preoperative evaluations and postoperative outcomes in paediatric and adult patients undergoing surgical resection for refractory epilepsy.
        Seizure. 2012; 21: 444-449
        • Hallbook T.
        • Ruggieri P.
        • Adina C.
        • Lachhwani D.K.
        • Gupta A.
        • Kotagal P.
        • et al.
        Contralateral MRI abnormalities in candidates for hemispherectomy for refractory epilepsy.
        Epilepsia. 2010; 51: 556-563
        • Liegeois F.
        • Connelly A.
        • Baldeweg T.
        • Vargha-Khadem F.
        Speaking with a single cerebral hemisphere: fMRI language organization after hemispherectomy in childhood.
        Brain Lang. 2008; 106: 195-203https://doi.org/10.1016/j.bandl.2008.01.010
      2. Hazany S, Mann D, Bagrodia N, et al. Cortical change after a 2-week novel robotic rehabilitation program in children with prior hemispherectomy: pilot imaging study. Childs Nerv Syst. Sep 10 2022;doi:10.1007/s00381-022-05664-8.

        • Zhang J.
        • Mei S.
        • Liu Q.
        • Liu W.
        • Chen H.
        • Xia H.
        • et al.
        fMRI and DTI assessment of patients undergoing radical epilepsy surgery.
        Epilepsy Res. 2013; 104: 253-263
        • de Bode S.
        • Firestine A.
        • Mathern G.W.
        • Dobkin B.
        Residual motor control and cortical representations of function following hemispherectomy: effects of etiology.
        J Child Neurol. 2005; 20: 64-75
      3. Holloway V, Gadian DG, Vargha-Khadem F, Porter DA, Boyd SG, Connelly A. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study. Brain : a journal of neurology. Dec 2000;123 Pt 12:2432-44.

        • Bittar R.G.
        • Ptito A.
        • Reutens D.C.
        Somatosensory representation in patients who have undergone hemispherectomy: a functional magnetic resonance imaging study.
        J Neurosurg. 2000; 92: 45-51https://doi.org/10.3171/jns.2000.92.1.0045
        • Graveline C.J.
        • Mikulis D.J.
        • Crawley A.P.
        • Hwang P.A.
        Regionalized sensorimotor plasticity after hemispherectomy fMRI evaluation.
        Pediatr Neurol. 1998; 19: 337-342
        • Honda N.
        • Matuoka T.
        • Sawada Y.
        • Nakano N.
        • Suwen L.
        • Higashimoto Y.
        • et al.
        Reorganization of sensorimotor function after functional hemispherectomy studied using near-infrared spectroscopy.
        Pediatr Neurosurg. 2011; 46: 313-317
        • Rutten G.J.
        • Ramsey N.F.
        • van Rijen P.C.
        • Franssen H.
        • van Veelen C.W.
        Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation.
        J Child Neurol. 2002; 17: 292-297
        • Pilato F.
        • Pravatà E.
        • Battaglia D.
        • Calandrelli R.
        • Massimi L.
        • Di Rocco C.
        • et al.
        Multimodal assessment of motor pathways and intracortical connections in functional hemispherectomy.
        Childs Nerv Syst. 2020; 36: 3085-3093
      4. Jacokes Z, Bhattrai A, Torgerson C, et al. Chapter 12: The Neuroimaging Challenges in Hemispherectomy Patients. Traumatic Brain Injury; Rehabilitation, treatment, and Case Management4th ed. Springer; 2016.

        • Chang W.H.
        • Kim Y.H.
        Robot-assisted Therapy in Stroke Rehabilitation.
        J Stroke. Sep 2013; 15: 174-181https://doi.org/10.5853/jos.2013.15.3.174
        • Masiero S.
        • Poli P.
        • Rosati G.
        • Zanotto D.
        • Iosa M.
        • Paolucci S.
        • et al.
        The value of robotic systems in stroke rehabilitation.
        Expert Rev Med Devices. 2014; 11: 187-198
        • Mekki M.
        • Delgado A.D.
        • Fry A.
        • Putrino D.
        • Huang V.
        Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review.
        Neurotherapeutics. 2018; 15: 604-617
        • Jezernik S.
        • Colombo G.
        • Keller T.
        • Frueh H.
        • Morari M.
        Robotic orthosis lokomat: a rehabilitation and research tool.
        Neuromodulation. 2003; 6: 108-115https://doi.org/10.1046/j.1525-1403.2003.03017.x
      5. Chang JL, Saul M, Volpe BT. Practical Review of Robotics in the Treatment of Chronic Impairment After Acquired Brain Injury. In: J. E, ed. Acquired Brain Injury. 2nd ed. Springer, Cham; 2019:71-88:chap 5.

        • Alves T.
        • Gonçalves R.S.
        • Carbone G.
        Serious Games Strategies With Cable-Driven Robots for Bimanual Rehabilitation: A Randomized Controlled Trial With Post-Stroke Patients.
        Front Robot AI. 2022; 9739088https://doi.org/10.3389/frobt.2022.739088
        • Jarrass N.
        • Proietti T.
        • Crocher V.
        • Robertson J.
        • Sahbani A.
        • Morel G.
        • et al.
        Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients.
        Front Hum Neurosci. 2014; 8https://doi.org/10.3389/fnhum.2014.00947
        • Łyp M.
        • Stanisławska I.
        • Witek B.
        • Olszewska-Żaczek E.
        • Czarny-Działak M.
        • Kaczor R.
        Robot-Assisted Body-Weight-Supported Treadmill Training in Gait Impairment in Multiple Sclerosis Patients: A Pilot Study.
        Adv Exp Med Biol. 2018; 2018: 111-115https://doi.org/10.1007/5584_2018_158
      6. Pérez-de la Cruz S. Use of Robotic Devices for Gait Training in Patients Diagnosed with Multiple Sclerosis: Current State of the Art. Sensors (Basel). Mar 28 2022;22(7)doi:10.3390/s22072580.

        • Geiger R.
        • Strasak A.
        • Treml B.
        • Gasser K.
        • Kleinsasser A.
        • Fischer V.
        • et al.
        Six-Minute Walk Test in Children and Adolescents.
        J Pediatr. 2007; 150: 395-399.e2
        • Law M.
        • Baptiste S.
        • McColl M.
        • Opzoomer A.
        • Polatajko H.
        • Pollock N.
        The Canadian occupational performance measure: an outcome measure for occupational therapy.
        Can J Occup Ther. 1990; 57: 82-87https://doi.org/10.1177/000841749005700207
        • Krumlinde-Sundholm L.
        Reporting outcomes of the Assisting Hand Assessment: what scale should be used?.
        Dev Med Child Neurol. 2012; 54: 807-808https://doi.org/10.1111/j.1469-8749.2012.04361.x
        • Gladstone D.J.
        • Danells C.J.
        • Black S.E.
        The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties.
        Neurorehabil Neural Repair. 2002; 16: 232-240https://doi.org/10.1177/154596802401105171
        • McDonald C.M.
        • Henricson E.K.
        • Abresch R.T.
        • Florence J.
        • Eagle M.
        • Gappmaier E.
        • et al.
        The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study.
        Muscle Nerve. 2013; 48: 357-368
        • Villarejo-Ortega F.
        • García-Fernández M.
        • Fournier-Del Castillo C.
        • Fabregate-Fuente M.
        • Álvarez-Linera J.
        • De Prada-Vicente I.
        • et al.
        Seizure and developmental outcomes after hemispherectomy in children and adolescents with intractable epilepsy.
        Childs Nerv Syst. 2013; 29: 475-488
        • Pulsifer M.B.
        • Brandt J.
        • Salorio C.F.
        • Vining E.P.
        • Carson B.S.
        • Freeman J.M.
        The cognitive outcome of hemispherectomy in 71 children.
        Epilepsia. 2004; 45: 243-254https://doi.org/10.1111/j.0013-9580.2004.15303.x
        • Tavares T.P.
        • Kerr E.N.
        • Smith M.L.
        Memory outcomes following hemispherectomy in children.
        Epilepsy Behav. 2020; 112: 107360