Advertisement
Original Research| Volume 108, P76-83, February 2023

Efficacy of 3D evaluation of unruptured paraclinoid aneurysms within Leksell GammaPlan® for determination of their intradural localization

      Highlights

      • Leksell GammaPlan® with the use of contrast-enhanced CISS and CTA images is helpful for preoperative 3D evaluation of paraclinoid aneurysms.
      • Preoperative 3D evaluation of paraclinoid aneurysms within Leksell GammaPlan® provides high accuracy of their intradural localization.
      • Preoperative 3D evaluation of paraclinoid aneurysms within Leksell GammaPlan® supports decision-making on their optimal management.

      Abstract

      Background

      Determination of the intradural unruptured paraclinoid aneurysm localization is difficult, but critical for selection of the optimal treatment strategy.

      Objective

      To assess efficacy of the three-dimensional (3D) evaluation of unruptured paraclinoid aneurysms within Leksell GammaPlan® (LGP; Elekta AB; Stockholm, Sweden) for determination of their intradural localization.

      Methods

      Overall, 125 incidentally diagnosed unruptured paraclinoid aneurysms in 118 patients (mean age, 55 years) underwent 3D evaluation of their localization within LGP using post-contrast thin-slice constructive interference in steady state (CISS) images, which in 41 cases were additionally co-registered and fused with the axial computed tomography angiography (CTA) source images.

      Results

      According to the evaluation within LGP, paraclinoid aneurysms were considered intradural, transitional, and extradural in 75, 25, and 25 cases respectively. Overall, 51 of 75 aneurysms deemed to be intradural, underwent microsurgical management, and intraoperative visual inspection confirmed their intradural localization in 45 cases, whereas it was transitional in 3, and extradural in 3. If during preoperative 3D evaluation within LGP only post-contrast CISS images were used, prediction of the pure intradural localization of aneurysm was correct in 88 % of cases (95 % CI: 79–97 %), and of the pure or partial (i.e., transitional) intradural localization in 94 % of cases (95 % CI: 88–100 %), whereas it was 100 % if co-registration and fusion of the contrast-enhanced CISS and CTA source images was done.

      Conclusion

      Intradural localization of the unruptured paraclinoid aneurysms may be effectively predicted based on their 3D evaluation within LGP using post-contrast thin-slice CISS and CTA source images, which may help with clinical decision-making.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barr H.W.K.
        • Blackwood W.
        • Meadows S.P.
        Intracavernous carotid aneurysms: a clinical-pathological report.
        Brain. 1971; 94: 607-622
        • Beretta F.
        • Sepahi A.N.
        • Zuccarello M.
        • Tomsick T.A.
        • Keller J.T.
        Radiographic imaging of the distal dural ring for determining the intradural or extradural location of aneurysms.
        Skull Base. 2005; 15: 253-262
        • Bouthillier A.
        • van Loveren H.R.
        • Keller J.T.
        Segments of the internal carotid artery: a new classification.
        Neurosurgery. 1996; 38: 425-433
        • Carlson A.P.
        • van Loveren H.R.
        • Youssef A.S.
        • Agazzi S.
        Junctional internal carotid artery aneurysms: the Schrödinger's cat of vascular neurosurgery.
        J Neurol Surg B Skull Base. 2015; 76: 150-156
        • Cheng Q.
        • Huang C.-B.
        • Wang J.-Y.
        • Jiang B.
        • Zhang L.-B.
        • Zeng M.
        • et al.
        Application of 3-dimensional computerized tomography angiography for defining cavernous sinus aneurysms and intradural aneurysms involving the internal carotid artery around the anterior clinoid process.
        World Neurosurg. 2017; 106: 785-789
        • Day A.L.
        Aneurysms of the ophthalmic segment: a clinical and anatomical analysis.
        J Neurosurg. 1990; 72: 677-691
        • De Jesús O.
        • Sekhar L.N.
        • Riedel C.J.
        Clinoid and paraclinoid aneurysms: surgical anatomy, operative techniques, and outcome.
        Surg Neurol. 1999; 51: 477-488
        • Dilenge D.
        • Héon M.
        The internal carotid artery.
        in: Newton T.H. Potts D.G. Radiology of the skull and brain: angiography. The C.V. Mosby Company, Saint Louis, 1974: 1202-1245
        • Dolenc V.V.
        A combined epi- and subdural direct approach to carotid-ophthalmic artery aneurysms.
        J Neurosurg. 1985; 62: 667-672
        • Ferroli P.
        • Tringali G.
        • Acerbi F.
        • Schiariti M.
        • Broggi M.
        • Aquino D.
        • et al.
        Advanced 3-dimensional planning in neurosurgery.
        Neurosurgery. 2013; 72: 54-62
        • Fischer E.
        The change of location of the anterior cerebral artery in angiographic imaging.
        Zentralbl Neurochir. 1938; 3 (in German): 300-313
        • Gibo H.
        • Lenkey C.
        • Rhoton Jr, A.L.
        Microsurgical anatomy of the supraclinoid portion of the internal carotid artery.
        J Neurosurg. 1981; 55: 560-574
        • Gonzalez L.F.
        • Walker M.T.
        • Zabramski J.M.
        • Partovi S.
        • Wallace R.C.
        • Spetzler R.F.
        Distinction between paraclinoid and cavernous sinus aneurysms with computed tomographic angiography.
        Neurosurgery. 2003; 52: 1131-1139
        • Harris F.S.
        • Rhoton A.L.
        Anatomy of the cavernous sinus: a microsurgical study.
        J Neurosurg. 1976; 45: 169-180
        • Hashimoto K.
        • Nozaki K.
        • Hashimoto N.
        Optic strut as a radiographic landmark in evaluating neck location of a paraclinoid aneurysm.
        Neurosurgery. 2006; 59: 880-897
        • Hayashi M.
        • Ochiai T.
        • Nakaya K.
        • Chernov M.
        • Tamura N.
        • Yomo S.
        • et al.
        Image-guided microradiosurgery for skull base tumors: advantages of using gadolinium-enhanced constructive interference in steady-state imaging.
        J Neurosurg. 2006; 105: 12-17
        • Hayashi M.
        • Chernov M.F.
        • Tamura N.
        • Izawa M.
        • Muragaki Y.
        • Iseki H.
        • et al.
        Concept of robotic gamma knife microradiosurgery and results of its clinical application in benign skull base tumors.
        Acta Neurochir Suppl. 2013; 116: 5-15
        • Hayashi M.
        • Chernov M.F.
        • Tamura N.
        • Yomo S.
        • Tamura M.
        • Horiba A.
        • et al.
        Usefulness of the advanced neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state images for gamma knife radiosurgery and planning microsurgical procedures for skull base tumors.
        Acta Neurochir Suppl. 2013; 116: 167-178
        • Hirai T.
        • Kai Y.
        • Morioka M.
        • Yano S.
        • Kitajima M.
        • Fukuoka H.
        • et al.
        Differentiation between paraclinoid and cavernous sinus aneurysms with contrast-enhanced 3D constructive interference in steady-state MR imaging.
        AJNR Am J Neuroradiol. 2008; 29: 130-133
        • Horowitz M.
        • Fichtel F.
        • Samson D.
        • Purdy P.
        Intracavernous carotid artery aneurysms: the possible importance of angiographic dural waisting; a case report.
        Surg Neurol. 1996; 46: 549-552
        • Hsu S.P.C.
        • Liao C.-H.
        Virtual line between anterior clinoid process and tuberculum sellae on 3-dimensional computed tomography angiography to differentiate cavernous sinus aneurysms from intradural aneurysms (Letter to the Editor).
        World Neurosurg. 2018; 113: 373
        • Inoue T.
        • Hirai H.
        • Shimizu T.
        • Tsuji M.
        • Shima A.
        • Suzuki F.
        • et al.
        Ocular neuromyotonia treated by microvascular decompression: usefulness of preoperative 3D imaging: case report.
        J Neurosurg. 2012; 117: 1166-1169
        • Ito K.
        • Hongo K.
        • Kakizawa Y.
        • Kobayashi S.
        Three-dimensional contrast medium-enhanced computed tomographic cisternography for preoperative evaluation of surgical anatomy of intradural paraclinoid aneurysms of the internal carotid artery: technical note.
        Neurosurgery. 2002; 51: 1089-1093
        • Kawashima A.
        • Okada Y.
        • Hayashi M.
        • Kawamata T.
        • Hori T.
        Application of contrast-enhanced constructive interference in steady state magnetic resonance imaging to Leksell GammaPlan for localizing C2–C3 aneurysms: technical note.
        Neurosurgery. 2009; 65: E1188-E1190
        • Kim M.Y.
        • Chung S.Y.
        • Kim S.M.
        • Park M.S.
        • Jung S.S.
        Determination of aneurysmal location with 3 dimension-computed tomographic angiography in the microsurgery of paraclinoid aneurysms.
        J Korean Neurosurg Soc. 2007; 42: 35-41
        • Kin T.
        • Nakatomi H.
        • Shojima M.
        • Tanaka M.
        • Ino K.
        • Mori H.
        • et al.
        A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images.
        J Neurosurg. 2012; 117: 78-88
        • Kobayashi S.
        • Kyoshima K.
        • Gibo H.
        • Hegde S.A.
        • Takemae T.
        • Sugita K.
        Carotid cave aneurysms of the internal carotid artery.
        J Neurosurg. 1989; 70: 216-221
        • Kupersmith M.J.
        • Hurst R.
        • Berenstein A.
        • Choi I.S.
        • Jafar J.
        • Ransohoff J.
        The benign course of cavernous carotid artery aneurysms.
        J Neurosurg. 1992; 77: 690-693
        • Kyoshima K.
        • Oikawa S.
        • Kobayashi S.
        Interdural origin of the ophthalmic artery at the dural ring of the internal carotid artery: report of two cases.
        J Neurosurg. 2000; 92: 488-489
        • Lee N.
        • Jung J.Y.
        • Huh S.K.
        • Kim D.J.
        • Kim D.I.
        • Kim J.
        Distinction between intradural and extradural aneurysms involving the paraclinoid internal carotid artery with T2-weighted three-dimensional fast spin-echo magnetic resonance imaging.
        J Korean Neurosurg Soc. 2010; 47: 437-441
        • Liao C.-H.
        • Lin C.-J.
        • Lin C.-F.
        • Huang H.-Y.
        • Chen M.-H.
        • Hsu S.P.C.
        • et al.
        Comparison of the effectiveness of using the optic strut and tuberculum sellae as radiological landmarks in diagnosing paraclinoid aneurysms with CT angiography.
        J Neurosurg. 2016; 125: 275-282
        • Linskey M.E.
        • Sekhar L.N.
        • Hirsch Jr, W.
        • Yonas H.
        • Horton J.A.
        Aneurysms of the intracavernous carotid artery: clinical presentation, radiographic features, and pathogenesis.
        Neurosurgery. 1990; 26: 71-79
        • Murayama Y.
        • Sakurama K.
        • Satoh K.
        • Nagahiro S.
        Identification of the carotid artery dural ring by using three-dimensional computerized tomography angiography: technical note.
        J Neurosurg. 2001; 95: 533-536
        • Nagasawa S.
        • Deguchi J.
        • Arai M.
        • Tanaka H.
        • Kawanishi M.
        • Ohta T.
        Topographic anatomy of paraclinoid carotid artery aneurysms: usefulness of MR angiographic source images.
        Neuroradiology. 1997; 39: 341-343
        • Nishihara M.
        • Tamaki N.
        Usefulness of volume-rendered three-dimensional computed tomographic angiography for surgical planning in treating unruptured paraclinoid internal carotid artery aneurysms.
        Kobe J Med Sci. 2001; 47: 221-230
        • Oishi M.
        • Fukuda M.
        • Hiraishi T.
        • Yajima N.
        • Sato Y.
        • Fujii Y.
        Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.
        J Neurosurg. 2012; 117: 555-565
        • Oishi M.
        • Fukuda M.
        • Yajima N.
        • Yoshida K.
        • Takahashi M.
        • Hiraishi T.
        • et al.
        Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors.
        J Neurosurg. 2013; 119: 94-105
        • Punt J.
        Some observations on aneurysms of the proximal internal carotid artery.
        J Neurosurg. 1979; 51: 151-154
        • Rubinstein D.
        • Sandberg E.J.
        • Breeze R.E.
        • Sheppard S.K.
        • Perkins T.G.
        • Cajade-Law A.G.
        • et al.
        T2-weighted three-dimensional turbo spin-echo MR of intracranial aneurysms.
        AJNR Am J Neuroradiol. 1997; 18: 1939-1943
        • Scerbak J.
        • Lapteva O.
        • Sahin O.S.
        • Ksanas U.
        • Barkauskiene A.
        • Lengvenis G.
        • et al.
        Identification of the distal dural ring and definition of paraclinoid aneurysms according to bony landmarks on 3-dimensional computed tomography angiography: a cadaveric and radiological study.
        Oper Neurosurg (Hagerstown). 2020; 19: 319-329
        • Tamura M.
        • Hayashi M.
        • Konishi Y.
        • Tamura N.
        • Régis J.
        • Mangin J.F.
        • et al.
        Advanced image coregistration within the Leksell workstation for the planning of glioma surgery: initial experience.
        J Neurol Surg Rep. 2013; 74: 118-122
        • Tamura M.
        • Konishi Y.
        • Tamura N.
        • Hayashi M.
        • Nakao N.
        • Uematsu Y.
        • et al.
        Usefulness of Leksell GammaPlan for preoperative planning of brain tumor resection: delineation of the cranial nerves and fusion of the neuroimaging data, including diffusion tensor imaging.
        Acta Neurochir Suppl. 2013; 116: 179-185
        • Taptas J.N.
        Intradural and extradural ICA (Letter to the Editor).
        J Neurosurg. 1979; 51: 877-878
        • Thines L.
        • Delmaire C.
        • Le Gars D.
        • Pruvo J.-P.
        • Lejeune J.-P.
        • Lehmann P.
        • et al.
        MRI location of the distal dural ring plane: anatomoradiological study and application to paraclinoid carotid artery aneurysms.
        Eur Radiol. 2006; 16: 479-488
        • Thines L.
        • Gauvrit J.-Y.
        • Leclerc X.
        • Le Gars D.
        • Delmaire C.
        • Pruvo J.-P.
        • et al.
        Usefulness of MR imaging for the assessment of nonophthalmic paraclinoid aneurysms.
        AJNR Am J Neuroradiol. 2008; 29: 125-129
        • Thines L.
        • Lee S.K.
        • Dehdashti A.R.
        • Agid R.
        • Willinsky R.A.
        • Wallace C.M.
        • et al.
        Direct imaging of the distal dural ring and paraclinoid internal carotid artery aneurysms with high-resolution T2 turbo-spin echo technique at 3-T magnetic resonance imaging.
        Neurosurgery. 2009; 64: 1059-1064
        • Tsuboi T.
        • Tokunaga K.
        • Shingo T.
        • Itoh T.
        • Mandai S.
        • Kinugasa K.
        • et al.
        Differentiation between intradural and extradural locations of juxta-dural ring aneurysms by using contrast-enhanced 3-dimensional time-of-flight magnetic resonance angiography.
        Surg Neurol. 2007; 67: 381-387
        • Umansky F.
        • Valarezo A.
        • Elidan J.
        The superior wall of the cavernous sinus: a microanatomical study.
        J Neurosurg. 1994; 81: 914-920
        • Watanabe Y.
        • Nakazawa T.
        • Yamada N.
        • Higashi M.
        • Hishikawa T.
        • Miyamoto S.
        • et al.
        Identification of the distal dural ring with use of fusion images with 3D-MR cisternography and MR angiography: application to paraclinoid aneurysms.
        AJNR Am J Neuroradiol. 2009; 30: 845-850
        • Watanabe Y.
        • Makidono A.
        • Nakamura M.
        • Saida Y.
        3D MR cisternography to identify distal dural rings: comparison of 3D-CISS and 3D-SPACE sequences.
        Magn Reson Med Sci. 2011; 10: 29-32
        • White J.A.
        • Horowitz M.B.
        • Samson D.
        Dural waisting as a sign of subarachnoid extension of cavernous carotid aneurysms: a follow-up case report.
        Surg Neurol. 1999; 52: 607-610
        • Yagi A.
        • Sato N.
        • Takahashi A.
        • Morita H.
        • Amanuma M.
        • Endo K.
        • et al.
        Added value of contrast-enhanced CISS imaging in relation to conventional MR images for the evaluation of intracavernous cranial nerve lesions.
        Neuroradiology. 2010; 52: 1101-1109
        • Yagi A.
        • Sato N.
        • Taketomi A.
        • Nakajima T.
        • Morita H.
        • Koyama Y.
        • et al.
        Normal cranial nerves in the cavernous sinuses: contrast-enhanced three-dimensional constructive interference in the steady state MR imaging.
        AJNR Am J Neuroradiol. 2013; 26: 946-950
        • Yoon S.J.
        • Shin N.-Y.
        • Lee J.W.
        • Huh S.K.
        • Park K.Y.
        Localization and treatment of unruptured paraclinoid aneurysms: a proton density MRI-based study.
        J Cerebrovasc Endovasc Neurosurg. 2015; 17: 180-184