Quantitative evaluation of cortical thickness in 3T in Behçet’s patients without neurological involvement and parenchymal neuro-Behçet’s disease


      • Even if there are no neurological symptoms in Behçet’s disease, there are changes in neurocognitive tests.
      • Our aim in this study is to investigate the cortical thickness changes in patients with Behçet’s disease.
      • Our study revealed the cortical thickness changes in Behçet’s patients for the first time.



      To evaluate the spatial distribution of cortical damage in Behcet’s Disease (BD) with or without neurological involvement using a cortical thickness measurement approach using three-dimensional T1-weighted imaging.

      Material and methods

      Fifty-eight BD patients without neurological involvement, twenty-two Parenchymal Neuro-Behçets disease (PNBD) patients, and fifty healthy controls were included in the prospective study. Anatomical 3D T1 images were obtained from all participants using 3T MRI. Using a computational anatomy toolbox (CAT12), we calculated and compared group differences in cortical thickness.


      Patients with BD without neurological involvement showed cortical thickness reduction in bilateral frontal, bilateral parietal, and right precuneus compared with the healthy controls (HCs) (p < 0.05 FWE corrected [FWEc]). PNBD patients showed frontoparietal cortical thickness reduction when compared with BD patients without neurological involvement (p < 0.05 FWEc). The PNBD patients showed widespread cortical thickness reduction compared with the HC patients (p < 0.05 FWEc). Disease duration was correlated with cortical thickness in the right pericalcarine (p = 0.012 false discovery rate [FDR], r = −0.40), left pericalcarine (p = 0.013 FDR, r = −0.44), and left transverse temporal (p = 0.007 FDR, r = −0.41) regions.


      There is a decrease in cortical thickness in BD patients without neurological involvement. Cortical thickness reduction is more prominent in parenchymal neurobehçet's patients. Cortical thickness shows a negative correlation with disease duration in some regions.



      BD (Behçet’s disease), NBD (Neuro-Behçet’s disease), PNBD (Parenchymal Neuro-Behçet’s disease), FWE (Family Wise Error), MRS (MR spectroscopy), DWI (Diffusion Weighted Imaging)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ishido M.
        • Horita N.
        • Takeuchi M.
        • Shibuya E.
        • Yamane T.
        • Kawagoe T.
        • et al.
        Distinct clinical features between acute and chronic progressive parenchymal neuro-Behçet disease: meta-analysis.
        Sci Rep. 2017; 7
      1. Koçer N, Islak C, Siva A, et al. CNS Involvement in neuro-Behçet syndrome: An MR Study. Vol 20.

        • Borhani Haghighi A.
        • Sarhadi S.
        • Farahangiz S.
        MRI findings of neuro-Behcet’s disease.
        Clin Rheumatol. 2011; 30: 765-770
        • Baysal T.
        • Dogan M.
        • Karlidag R.
        • Ozisik H.I.
        • Baysal O.
        • Bulut T.
        • et al.
        Diffusion-weighted imaging in chronic Behçet patients with and without neurological findings.
        Neuroradiology. 2005; 47: 431-437
        • Atasoy B.
        • Toprak H.
        • Su Kucuk O.
        • Selvitop R.
        • Yaman A.
        • Gursoy E.
        • et al.
        Relationship of diffusion tensor imaging parameters with neurocognitive dysfunction in patients with Behcet’s disease.
        Acta Neurol Belg. 2022; 122: 1177-1186
        • Alkan A.
        • Goktan A.
        • Karincaoglu Y.
        • Kamisli S.
        • Dogan M.
        • Oztanir N.
        • et al.
        Brain perfusion MRI findings in patients with Behcet’s disease.
        Scientific World J. 2012; 2012: 1-9
        • Baysal T.
        • Ozisik H.I.
        • Karlidag R.
        • et al.
        Proton MRS in Behçet’s disease with and without neurological findings.
        Neuroradiology. 2003; 45: 860-864
        • Arai Y.
        • Kohno S.
        • Takahashi Y.
        • Miyajima Y.
        • Tsutusi Y.
        Autopsy case of neuro-Behçet’s disease with multifocal neutrophilic perivascular inflammation.
        Neuropathology. 2006; 26: 579-585
        • Kikuchi H.
        • Takayama M.
        • Hirohata S.
        Quantitative analysis of brainstem atrophy on magnetic resonance imaging in chronic progressive neuro-Behçet’s disease.
        J Neurol Sci. 2014; 337: 80-85
        • Gündüz T.
        • Kürtüncü M.
        • Matur Z.
        • Tüzün E.
        • Limon U.
        • Tanyıldız B.
        • et al.
        Laboratory and clinical correlates of brain atrophy in Neuro-Behçet’s disease.
        J Neurol Sci. 2020; 414
        • Danti S.
        • Toschi N.
        • Diciotti S.
        • Tessa C.
        • Poletti M.
        • Del Dotto P.
        • et al.
        Cortical thickness in de novo patients with Parkinson disease and mild cognitive impairment with consideration of clinical phenotype and motor laterality.
        Eur J Neurol. 2015; 22: 1564-1572
        • Stellmann J.-P.
        • Wanke N.
        • Maarouf A.
        • Gellißen S.
        • Heesen C.
        • Audoin B.
        • et al.
        Cognitive performance shows domain specific associations with regional cortical thickness in multiple sclerosis.
        NeuroImage: Clinical. 2021; 30
        • Monastero R.
        • Camarda C.
        • Pipia C.
        • Lopez G.
        • Camarda L.K.C.
        • Baiamonte V.
        • et al.
        Cognitive impairment in Behçet’s disease patients without overt neurological involvement.
        J Neurol Sci. 2004; 220: 99-104
        • Talarico R.
        • Palagini L.
        • d’Ascanio A.
        • Elefante E.
        • Ferrari C.
        • Stagnaro C.
        • et al.
        Epidemiology and management of neuropsychiatric disorders in behçet’s syndrome.
        CNS Drugs. 2015; 29: 189-196
      2. Miyakawa T, Murayama E, Deshimaru M, Shikai I, K6zuma S. Neuro-Behget’s Disease Showing Severe Atrophy of the Cerebrum. Vol 34. Springer-Verlag; 1976.

        • Zayed H.
        • Effat D.
        • Nawito Z.
        • Abdou A.A.
        • El Din M.N.
        • El-Refaei S.
        • et al.
        Silent central nervous system involvement in Egyptian Behçet’s disease patients: clinical, psychiatric, and neuroimaging evaluation.
        Clin Rheumatol. 2011; 30: 1173-1180
        • Vandenbroucke J.P.
        • von Elm E.
        • Altman D.G.
        • Gøtzsche P.C.
        • Mulrow C.D.
        • Pocock S.J.
        • et al.
        Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration.
        Int J Surgery. 2014; 12: 1500-1524
        • Davatchi F.
        • Assaad-Khalil S.
        • Calamia K.T.
        • Crook J.E.
        • Sadeghi-Abdollahi B.
        • Schirmer M.
        • et al.
        The International Criteria for Behçet's Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria.
        J Eur Acad Dermatol Venereol: JEADV. 2014; 28: 338-347
        • Kalra S.
        • Silman A.
        • Akman-Demir G.
        • Bohlega S.
        • Borhani-Haghighi A.
        • Constantinescu C.S.
        • et al.
        Diagnosis and management of Neuro-Behçet’s disease: international consensus recommendations.
        J Neurol. 2014; 261: 1662-1676
        • Dahnke R.
        • Yotter R.A.
        • Gaser C.
        Cortical thickness and central surface estimation.
        NeuroImage. 2013; 65: 336-348
        • Seiger R.
        • Ganger S.
        • Kranz G.S.
        • Hahn A.
        • Lanzenberger R.
        Cortical thickness estimations of FreeSurfer and the CAT12 toolbox in patients with Alzheimer’s disease and healthy controls.
        J Neuroimaging. 2018; 28: 515-523
        • Smith S.M.
        • Nichols T.E.
        Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference.
        NeuroImage. 2009; 44: 83-98
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        NeuroImage. 2006; 31: 968-980
        • Haghighi A.B.
        • Sharifzad H.R.
        • Matin S.
        • Rezaee S.
        The pathological presentations of neuro-Behçet disease: a case report and review of the literature.
        Neurologist. 2007; 13: 209-214
      3. Akman-Demir G, Serdaroglu P, Tasçi B, Neuro-Behçet Study Group the. Clinical Patterns of Neurological Involvement in Behçet’s Disease: Evaluation of 200 Patients. Vol 122; 1999.

        • Kececi H.
        • Akyol M.
        P300 in Behcet’s patients without neurological manifestations.
        Can J Neurol Sci. 2001; 28: 66-69
        • Aykac S.C.
        • Gökcay F.
        • Calli C.
        What is the role of diffusion tensor imaging (DTI) in detecting subclinical pyramidal tract dysfunction in Behçet’s and neuro-Behçet’s cases?.
        Neurol Sci. 2019; 40: 753-758