Advertisement

Applications of elastography in operative neurosurgery: A systematic review

      Highlights

      • 32 studies with 990 patients identified reporting elastography for neurosurgery.
      • Elastography can determine lesion stiffness and assist with diagnostic workup.
      • Quantitative measurements can help differentiate lesions pre-operatively.
      • Ultrasound elastography can provide real-time data to improve tumor resection.
      • Microscopic abnormalities and residual lesions can be identified on elastography.

      Abstract

      Elastography is an imaging technology capable of measuring tissue stiffness and consistency. The technology has achieved widespread use in the workup and management of diseases of the liver, breast, thyroid, and prostate. Although elastography is increasingly being applied in neurosurgery, it has not yet achieved widespread adoption and many clinicians remain unfamiliar with the technology. Therefore, we sought to summarize the range of applications and elastography modalities available for neurosurgery, report its effectiveness in comparison with conventional imaging methods, and offer recommendations. All full-text English-language manuscripts on the use of elastography for neurosurgical procedures were screened using the PubMed/MEDLINE, Embase, Cochrane Library, Scopus, and Web of Science databases. Thirty-two studies were included with 990 patients, including 21 studies on intracranial tumors, 5 on hydrocephalus, 4 on epilepsy, 1 on spinal cord compression, and 1 on adolescent scoliosis. Twenty studies used ultrasound elastography (USE) whereas 12 used magnetic resonance elastography (MRE). MRE studies were mostly used in the preoperative setting for assessment of lesion stiffness, tumor–brain adherence, diagnostic workup, and operative planning. USE studies were performed intraoperatively to guide resection of lesions, determine residual microscopic abnormalities, assess the tumor–brain interface, and study mechanical properties of tumors. Elastography can assist with resection of brain tissue, detection of microscopic lesions, and workup of hydrocephalus, among other applications under investigation. Its sensitivity often exceeds that of conventional MRI and ultrasound for identifying abnormal tissue and lesion margins.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fahlbusch R.
        • Golby A.
        • Prada F.
        • Zada G.
        Introduction: Utility of intraoperative imaging.
        Neurosurg Focus. 2016; 40: E1https://doi.org/10.3171/2016.1.FOCUS1610
        • Chandler W.F.
        • Rubin J.M.
        The application of ultrasound during brain surgery.
        World J Surg. 1987; 11: 558-569https://doi.org/10.1007/BF01655829
        • Castillo M.
        History and evolution of brain tumor imaging: Insights through radiology.
        Radiology. 2014; 273: S111-S125https://doi.org/10.1148/RADIOL.14140130/ASSET/IMAGES/LARGE/RADIOL.14140130.FIG12.JPEG
        • Swinney C.
        • Li A.
        • Bhatti I.
        • Veeravagu A.
        Optimization of tumor resection with intra-operative magnetic resonance imaging.
        J Clin Neurosci. 2016; 34: 11-14https://doi.org/10.1016/J.JOCN.2016.05.030
        • Chan H.W.
        • Bamber J.
        • Dorward N.
        • Chakraborty A.
        • Uff C.
        Ultrasound Elastography.
        in: Prada F. Solbiati L. Martegani A. DiMeco F. Intraoperative Ultrasound Neurosurg. From Stand. B-mode to Elastosonography, Springer, Cham2016: 173-187https://doi.org/10.1007/978-3-319-25268-1_14
        • Garra B.S.
        Elastography: history, principles, and technique comparison.
        Abdom Imaging. 2015; 40: 680-697https://doi.org/10.1007/S00261-014-0305-8
      1. National Institute of Health. Quality Assessment Tool for Case Series Studies 2020. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed November 28, 2021).

      2. North American Spine Society. Levels of Evidence For Primary Research Question 2005. https://www.spine.org/Portals/0/Assets/Downloads/ResearchClinicalCare/LevelsofEvidence.pdf (accessed November 28, 2021).

      3. Chan HW, Pressler R, Uff C, Gunny R, St Piers K, Cross H, et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative ShearWave elastography. Epilepsia 2014;55. https://doi.org/10.1111/EPI.12562.

        • Dirrichs T.
        • Meiser N.
        • Panek A.
        • Trepels-Kottek S.
        • Orlikowsky T.
        • Kuhl C.K.
        • et al.
        Transcranial Shear Wave Elastography of Neonatal and Infant Brains for Quantitative Evaluation of Increased Intracranial Pressure.
        Invest Radiol. 2019; 54: 719-727
        • Vergari C.
        • Chanteux L.
        • Pietton R.
        • Langlais T.
        • Vialle R.
        • Skalli W.
        Shear wave elastography of lumbar annulus fibrosus in adolescent idiopathic scoliosis before and after surgical intervention.
        Eur Radiol. 2020; 30: 1980-1985https://doi.org/10.1007/S00330-019-06563-4
        • Olivero W.C.
        • Wszalek T.
        • Wang H.
        • Farahvar A.
        • Rieth S.M.
        • Johnson C.L.
        Magnetic Resonance Elastography Demonstrating Low Brain Stiffness in a Patient with Low-Pressure Hydrocephalus: Case Report.
        Pediatr Neurosurg. 2016; 51: 257-262https://doi.org/10.1159/000445900
        • Yin Z.
        • Glaser K.J.
        • Manduca A.
        • Van Gompel J.J.
        • Link M.J.
        • Hughes J.D.
        • et al.
        Slip Interface Imaging Predicts Tumor-Brain Adhesion in Vestibular Schwannomas.
        Radiology. 2015; 277: 507-517
        • Yin Z.
        • Hughes J.D.
        • Glaser K.J.
        • Manduca A.
        • Van Gompel J.
        • Link M.J.
        • et al.
        Slip interface imaging based on MR-elastography preoperatively predicts meningioma-brain adhesion.
        J Magn Reson Imaging. 2017; 46: 1007-1016
        • Cepeda S.
        • García-García S.
        • Arrese I.
        • Fernández-Pérez G.
        • Velasco-Casares M.
        • Fajardo-Puentes M.
        • et al.
        Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis. Front.
        Oncol. 2021;10:1.; https://doi.org/10.3389/FONC.2020.590756/FULL
        • Cepeda S.
        • García-García S.
        • Velasco-Casares M.
        • Fernández-Pérez G.
        • Zamora T.
        • Arrese I.
        • et al.
        Is There a Relationship between the Elasticity of Brain Tumors, Changes in Diffusion Tensor Imaging, and Histological Findings? A Pilot Study Using Intraoperative Ultrasound Elastography.
        Brain Sci. 2021; 11: 1-13https://doi.org/10.3390/BRAINSCI11020271
        • Cepeda S.
        • García-García S.
        • Arrese I.
        • Velasco-Casares M.
        • Sarabia R.
        Relationship between the overall survival in glioblastomas and the radiomic features of intraoperative ultrasound: a feasibility study.
        J Ultrasound. 2022; 25: 121-128
      4. Chakraborty A, Bamber JC, Dorward NL. Preliminary investigation into the use of ultrasound elastography during brain tumour resection 2012;20:33–40. https://doi.org/10.1258/ULT.2011.011057.

        • Chan H.W.
        • Uff C.
        • Chakraborty A.
        • Dorward N.
        • Bamber J.C.
        Clinical Application of Shear Wave Elastography for Assisting Brain Tumor Resection.
        Front Oncol. 2021; 11: 112https://doi.org/10.3389/FONC.2021.619286/BIBTEX
        • Chauvet D.
        • Imbault M.
        • Capelle L.
        • Demene C.
        • Mossad M.
        • Karachi C.
        • et al.
        In Vivo Measurement of Brain Tumor Elasticity Using Intraoperative Shear Wave Elastography.
        Ultraschall Med. 2016; 37: 584-590
        • Selbekk T.
        • Brekken R.
        • Indergaard M.
        • Solheim O.
        • Unsgård G.
        Comparison of contrast in brightness mode and strain ultrasonography of glial brain tumours.
        BMC Med Imaging. 2012; 12: 1-7https://doi.org/10.1186/1471-2342-12-11/FIGURES/2
        • Yin L.u.
        • Cheng L.
        • Wang F.
        • Zhu X.
        • Hua Y.
        • He W.
        Application of intraoperative B-mode ultrasound and shear wave elastography for glioma grading.
        Quant Imaging Med Surg. 2021; 11: 2733-2743
        • Selbekk T.
        • Bang J.
        • Unsgaard G.
        Strain processing of intraoperative ultrasound images of brain tumours: Initial results.
        Ultrasound Med Biol. 2005; 31: 45-51https://doi.org/10.1016/J.ULTRASMEDBIO.2004.09.011
      5. Cepeda S, Arrese I, García-García S, Velasco-Casares M, Escudero-Caro T, Zamora T, et al. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. World Neurosurg 2021;146:e1147–59. https://doi.org/10.1016/J.WNEU.2020.11.113.

        • Hughes J.D.
        • Fattahi N.
        • Van Gompel J.
        • Arani A.
        • Meyer F.
        • Lanzino G.
        • et al.
        Higher-Resolution Magnetic Resonance Elastography in Meningiomas to Determine Intratumoral Consistency.
        Neurosurgery. 2015; 77: 653-659
        • Prada F.
        • Del Bene M.
        • Rampini A.
        • Mattei L.
        • Casali C.
        • Vetrano I.G.
        • et al.
        Intraoperative Strain Elastosonography in Brain Tumor Surgery.
        Oper Neurosurg (Hagerstown, Md). 2019; 17: 227-236
        • Sakai N.
        • Takehara Y.
        • Yamashita S.
        • Ohishi N.
        • Kawaji H.
        • Sameshima T.
        • et al.
        Shear Stiffness of 4 Common Intracranial Tumors Measured Using MR Elastography: Comparison with Intraoperative Consistency Grading.
        AJNR Am J Neuroradiol. 2016; 37: 1851-1859
        • Takamura T.
        • Motosugi U.
        • Ogiwara M.
        • Sasaki Y.
        • Glaser K.J.
        • Ehman R.L.
        • et al.
        Relationship between Shear Stiffness Measured by MR Elastography and Perfusion Metrics Measured by Perfusion CT of Meningiomas.
        AJNR Am J Neuroradiol. 2021; 42: 1216-1222
        • Hughes J.D.
        • Fattahi N.
        • Van Gompel J.
        • Arani A.
        • Ehman R.
        • Huston J.
        Magnetic resonance elastography detects tumoral consistency in pituitary macroadenomas.
        Pituitary. 2016; 19: 286-292
        • Lagerstrand K.
        • Gaedes N.
        • Eriksson S.
        • Farahmand D.
        • De Coursey E.
        • Johansson G.
        • et al.
        Virtual magnetic resonance elastography has the feasibility to evaluate preoperative pituitary adenoma consistency.
        Pituitary. 2021; 24: 530-541
        • Al-Habib A.
        • Alhothali W.
        • Albakr A.
        • Elwatidy S.
        • Alawaji G.
        • Alabdulsalam H.
        • et al.
        Effects of compressive lesions on intraoperative human spinal cord elasticity.
        J Neurosurg Spine. 2021; 35: 807-816
        • Mathon B.
        • Amelot A.
        • Carpentier A.
        • Clemenceau S.
        Intraoperative real-time guidance using ShearWave Elastography for epilepsy surgery.
        Seizure - Eur J Epilepsy. 2019; 71: 24-27https://doi.org/10.1016/J.SEIZURE.2019.06.001
        • Mathon B.
        • Clemenceau S.
        • Carpentier A.
        Intraoperative Ultrasound Shear-Wave Elastography in Focal Cortical Dysplasia Surgery.
        J Clin Med. 2021; 10: 1-11https://doi.org/10.3390/JCM10051049
        • Prada F.
        • Gennari A.G.
        • Quaia E.
        • D’Incerti L.
        • de Curtis M.
        • DiMeco F.
        • et al.
        Advanced intraoperative ultrasound (ioUS) techniques in focal cortical dysplasia (FCD) surgery: A preliminary experience on a case series.
        Clin Neurol Neurosurg. 2020; 198: 106188
        • Freimann F.B.
        • Streitberger K.J.
        • Klatt D.
        • Lin K.
        • McLaughlin J.
        • Braun J.
        • et al.
        Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus.
        Neuroradiology. 2012; 54: 189-196https://doi.org/10.1007/S00234-011-0871-1/FIGURES/3
        • Perry A.
        • Graffeo C.S.
        • Fattahi N.
        • ElSheikh M.M.
        • Cray N.
        • Arani A.
        • et al.
        Clinical Correlation of Abnormal Findings on Magnetic Resonance Elastography in Idiopathic Normal Pressure Hydrocephalus.
        World Neurosurg. 2017; 99: 695-700.e1
        • Solamen L.M.
        • McGarry M.D.J.
        • Fried J.
        • Weaver J.B.
        • Lollis S.S.
        • Paulsen K.D.
        Poroelastic Mechanical Properties of the Brain Tissue of Normal Pressure Hydrocephalus Patients During Lumbar Drain Treatment Using Intrinsic Actuation MR Elastography.
        Acad Radiol. 2021; 28: 457-466https://doi.org/10.1016/J.ACRA.2020.03.009
        • Murphy M.C.
        • Huston J.
        • Glaser K.J.
        • Manduca A.
        • Meyer F.B.
        • Lanzino G.
        • et al.
        Preoperative assessment of meningioma stiffness by magnetic resonance elastography.
        J Neurosurg. 2013; 118: 643https://doi.org/10.3171/2012.9.JNS12519
        • Alawaji G.
        • Alhothali W.
        • Albakr A.
        • Amer A.
        • Al-Habib A.
        • Ajlan A.
        Shear wave elastography for intracranial epidermoid tumors.
        Clin Neurol Neurosurg. 2021; 207106531https://doi.org/10.1016/J.CLINEURO.2021.106531
        • Della Pepa G.M.
        • Menna G.
        • Stifano V.
        • Pezzullo A.M.
        • Auricchio A.M.
        • Rapisarda A.
        • et al.
        Predicting meningioma consistency and brain-meningioma interface with intraoperative strain ultrasound elastography: a novel application to guide surgical strategy.
        Neurosurg Focus. 2021; 50: E15
        • Sarvazyan A.
        • Hall T.J.
        • Urban M.W.
        • Fatemi M.
        • Aglyamov S.R.
        • Garra B.S.
        An overview of elastography - an emerging branch of medical imaging.
        Curr Med Imaging Rev. 2011; 7: 255https://doi.org/10.2174/157340511798038684
        • Ferraioli G.
        • Wong V.-S.
        • Castera L.
        • Berzigotti A.
        • Sporea I.
        • Dietrich C.F.
        • et al.
        Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations.
        Ultrasound Med Biol. 2018; 44: 2419-2440
        • Gherlan G.S.
        Liver ultrasound elastography: More than staging the disease.
        World J Hepatol. 2015; 7: 1595https://doi.org/10.4254/WJH.V7.I12.1595
        • Zhan J.
        • Jin J.M.
        • Diao X.H.
        • Chen Y.
        Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules–A meta-analysis.
        Eur J Radiol. 2015; 84: 2181-2186https://doi.org/10.1016/J.EJRAD.2015.07.015
        • Chen L.
        • He J.
        • Liu G.
        • Shao K.
        • Zhou M.
        • Li B.
        • et al.
        Diagnostic performances of shear-wave elastography for identification of malignant breast lesions: a meta-analysis.
        Jpn J Radiol. 2014; 32: 592-599
        • Menzilcioglu M.S.
        • Duymus M.
        • Citil S.
        • Avcu S.
        • Gungor G.
        • Sahin T.
        • et al.
        Strain wave elastography for evaluation of renal parenchyma in chronic kidney disease.
        Br J Radiol. 2015; 88: 20140714
        • Sigrist R.M.S.
        • Liau J.
        • Kaffas A.E.
        • Chammas M.C.
        • Willmann J.K.
        Ultrasound Elastography: Review of Techniques and Clinical Applications.
        Theranostics. 2017; 7: 1303-1329
        • Tang A.n.
        • Cloutier G.
        • Szeverenyi N.M.
        • Sirlin C.B.
        Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 2, Diagnostic Performance, Confounders, and Future Directions.
        AJR Am J Roentgenol. 2015; 205: 33-40
        • Nicholson J.A.
        • Tsang S.T.J.
        • MacGillivray T.J.
        • Perks F.
        • Simpson A.H.R.W.
        What is the role of ultrasound in fracture management?: Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection.
        Bone Joint Res. 2019; 8: 304-312
        • Cohen-Cohen S.
        • Helal A.
        • Yin Z.
        • Ball M.K.
        • Ehman R.L.
        • Van G.JJ.
        • et al.
        Predicting pituitary adenoma consistency with preoperative magnetic resonance elastography.
        J Neurosurg. 2021; 1: 1-8https://doi.org/10.3171/2021.6.JNS204425
        • Gupta P.
        • Sodhi K.S.
        • Saxena A.K.
        • Khandelwal N.
        • Singhi P.
        Neonatal cranial sonography: A concise review for clinicians.
        J Pediatr Neurosci. 2016; 11: 7https://doi.org/10.4103/1817-1745.181261
        • Vergari C.
        • Rouch P.
        • Dubois G.
        • Bonneau D.
        • Dubousset J.
        • Tanter M.
        • et al.
        Non-invasive biomechanical characterization of intervertebral discs by shear wave ultrasound elastography: a feasibility study.
        Eur Radiol. 2014; 24: 3210-3216
        • Afacan O.
        • Erem B.
        • Roby D.P.
        • Roth N.
        • Roth A.
        • Prabhu S.P.
        • et al.
        Evaluation of motion and its effect on brain magnetic resonance image quality in children.
        Pediatr Radiol. 2016; 46: 1728-1735
        • Serai S.D.
        • Panganiban J.
        • Dhyani M.
        • Degnan A.J.
        • Anupindi S.A.
        Imaging Modalities in Pediatric NAFLD.
        Clin Liver Dis. 2021; 17: 200-208
        • Litwiller D.V.
        • Mariappan Y.K.
        • Ehman R.L.
        Magnetic Resonance Elastography.
        Curr Med Imaging Rev. 2012; 8: 46https://doi.org/10.2174/157340512799220562
        • Youk J.H.
        • Son E.J.
        • Gweon H.M.
        • Kim H.
        • Park Y.J.
        • Kim J.A.
        Comparison of Strain and Shear Wave Elastography for the Differentiation of Benign From Malignant Breast Lesions, Combined With B-mode Ultrasonography: Qualitative and Quantitative Assessments.
        Ultrasound Med Biol. 2014; 40: 2336-2344https://doi.org/10.1016/J.ULTRASMEDBIO.2014.05.020
      6. Sowa Y, Numajiri T, Itsukage S, Nishino K. Comparison of Shear-Wave and Strain Ultrasound Elastography for Evaluating Fat Induration after Breast Reconstruction. Plast Reconstr Surg Glob Open 2016;4:e677. https://doi.org/10.1097/GOX.0000000000000678.

        • Mutala T.M.
        • Ndaiga P.
        • Aywak A.
        Comparison of qualitative and semiquantitative strain elastography in breast lesions for diagnostic accuracy.
        Cancer Imaging. 2016; 16https://doi.org/10.1186/S40644-016-0070-8
        • Gennisson J.L.
        • Deffieux T.
        • Fink M.
        • Tanter M.
        Ultrasound elastography: Principles and techniques.
        Diagn Interv Imaging. 2013; 94: 487-495https://doi.org/10.1016/J.DIII.2013.01.022
        • Taljanovic M.S.
        • Gimber L.H.
        • Becker G.W.
        • Latt L.D.
        • Klauser A.S.
        • Melville D.M.
        • et al.
        Shear-wave elastography: Basic physics and musculoskeletal applications.
        Radiographics. 2017; 37: 855-870https://doi.org/10.1148/RG.2017160116/ASSET/IMAGES/LARGE/RG.2017160116.TBL1.JPEG
        • Nowicki A.
        • Dobruch-Sobczak K.
        Introduction to ultrasound elastography.
        J Ultrason. 2016; 16: 113https://doi.org/10.15557/JOU.2016.0013
        • Gajdoš M.
        • Říha P.
        • Kojan M.
        • Doležalová I.
        • Mutsaerts H.J.M.M.
        • Petr J.
        • et al.
        Epileptogenic zone detection in MRI negative epilepsy using adaptive thresholding of arterial spin labeling data.
        Sci Reports. 2021.1–6.; 2021: 11https://doi.org/10.1038/s41598-021-89774-4
        • Ganau M.
        • Syrmos N.
        • Martin A.R.
        • Jiang F.
        • Fehlings M.G.
        Intraoperative ultrasound in spine surgery: history, current applications, future developments.
        Quant Imaging Med Surg. 2018; 8: 261https://doi.org/10.21037/QIMS.2018.04.02
        • Park S.H.
        • Kim S.Y.
        • Suh C.H.
        • Lee S.S.
        • Kim K.W.
        • Lee S.J.
        • et al.
        What we need to know when performing and interpreting US elastography.
        Clin Mol Hepatol. 2016; 22: 406-414
        • Zhang Y.N.
        • Fowler K.J.
        • Ozturk A.
        • Potu C.K.
        • Louie A.L.
        • Montes V.
        • et al.
        Liver Fibrosis Imaging: A clinical review of Ultrasound and Magnetic Resonance Elastography.
        J Magn Reson Imaging. 2020; 51: 25-42
        • Ferraioli G.
        • Filice C.
        • Castera L.
        • Choi B.I.
        • Sporea I.
        • Wilson S.R.
        • et al.
        WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver.
        Ultrasound Med Biol. 2015; 41: 1161-1179
        • Lee S.H.
        • Chang J.M.
        • Cho N.
        • Koo H.R.
        • Yi A.
        • Kim S.J.
        • et al.
        Practice guideline for the performance of breast ultrasound elastography.
        Ultrasonography. 2014; 33: 3-10
        • Barr R.G.
        • Nakashima K.
        • Amy D.
        • Cosgrove D.
        • Farrokh A.
        • Schafer F.
        • et al.
        WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast.
        Ultrasound Med Biol. 2015; 41: 1148-1160
        • Barr R.G.
        • Cosgrove D.
        • Brock M.
        • Cantisani V.
        • Correas J.M.
        • Postema A.W.
        • et al.
        WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 5.
        Prostate Ultrasound Med Biol. 2017; 43: 27-48
        • Cosgrove D.
        • Barr R.
        • Bojunga J.
        • Cantisani V.
        • Chammas M.C.
        • Dighe M.
        • et al.
        WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4.
        Thyroid Ultrasound Med Biol. 2017; 43: 4-26