Advertisement

The increase of α-synuclein and alterations of dynein in A53T transgenic and aging mouse

  • Yiqing Wang
    Affiliations
    Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this manuscript.
    Zhenjie Sun
    Footnotes
    1 These authors contributed equally to this manuscript.
    Affiliations
    Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China

    Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this manuscript.
    Shouyun Du
    Footnotes
    1 These authors contributed equally to this manuscript.
    Affiliations
    Department of Neurology, Guanyun People’s Hospital, Guanyun, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this manuscript.
    Hongyu Wei
    Footnotes
    1 These authors contributed equally to this manuscript.
    Affiliations
    Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
    Search for articles by this author
  • Xiuming Li
    Affiliations
    Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
    Search for articles by this author
  • Xiaojing Li
    Affiliations
    Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
    Search for articles by this author
  • Jiahui Shen
    Affiliations
    Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
    Search for articles by this author
  • Xinya Chen
    Affiliations
    Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
    Search for articles by this author
  • Zenglin Cai
    Correspondence
    Corresponding author at: No. 1 Lijiang Road, Suzhou High-tech Zone, Suzhou City, Jiangsu Province, 215153, China.
    Affiliations
    Department of Neurology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China

    Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this manuscript.
Published:November 19, 2021DOI:https://doi.org/10.1016/j.jocn.2021.11.002

      Abstract

      The dynein protein plays a key role in the degradation pathway by attaching to targeted molecules and transporting the autophagosome to the centrosome. Aging plays an important role in the pathogenesis of Parkinson's disease (PD), but its effect on dynein is not clear. In this study we analyzed behavioral characteristics using the rod endurance test and climbing rod time test in different aged mice (3 months, 12 months, 20 months), and measured protein expression of dynein, α-synuclein, Tctex-1, and LC3 in the substantia nigra of the mice by Western blot. The mRNA levels of dynein, α-synuclein, LC3 and Tctex-1 were measured by quantitative real time reverse transcription PCR, and detecting expression of dynein and α-synuclein by immunofluorescence. We found the motor functions of A53T mutant mice, in 12 months and 20 months, decreased more significantly compared with normal mice (p < 0.05). In addition, the expression of dynein, LC3-Ⅱ and Tctex-1 proteins in the substantia nigra of the two groups decreased with age. However, α-synuclein protein increased gradually with age, with significantly higher levels in the PD groups compared with age matched controls (p < 0.05). These results were confirmed by immunofluorescence. Our data demonstrates that dynein and other autophagy proteins change with age, and this is associated with increased α-synuclein. Therefore, therapeutics that prevent dynein dysfunction may offer novel treatments for PD and other autophagy related diseases.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Levy G.
        The relationship of Parkinson disease with aging.
        Arch Neurol. 2007; 64: 1242-1246
        • Hunn B.H.M.
        • Vingill S.
        • Threlfell S.
        • Alegre-Abarrategui J.
        • Magdelyns M.
        • Deltheil T.
        • et al.
        Impairment of macroautophagy in dopamine neurons has opposing effects on parkinsonian pathology and behavior.
        Cell Rep. 2019; 29: 920-931.e7
        • Oaks A.W.
        • Frankfurt M.
        • Finkelstein D.I.
        • Sidhu A.
        • Mosley R.L.
        Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function.
        PLoS ONE. 2013; 8: e60378
        • Martinez-Vicente M.
        • Cuervo A.M.
        Autophagy and neurodegeneration: when the cleaning crew goes on strike.
        Lancet Neurol. 2007; 6: 352-361
        • Webb J.L.
        • Ravikumar B.
        • Atkins J.
        • Skepper J.N.
        • Rubinsztein D.C.
        Alpha-Synuclein is degraded by both autophagy and the proteasome.
        J Biol Chem. 2003; 278: 25009-25013
        • Hunn B.H.M.
        • Cragg S.J.
        • Bolam J.P.
        • Spillantini M.-G.
        • Wade-Martins R.
        Impaired intracellular trafficking defines early Parkinson's disease.
        Trends Neurosci. 2015; 38: 178-188
        • Shekhar N.
        • Wu J.
        • Dickinson R.B.
        • Lele T.P.
        Cytoplasmic dynein: tension generation on microtubules and the nucleus.
        Cell Mol Bioeng. 2013; 6: 74-81
        • Chen X.-J.
        • Xu H.
        • Cooper H.M.
        • Liu Y.
        Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases.
        Sci China Life Sci. 2014; 57: 372-377
        • Cianfrocco M.A.
        • DeSantis M.E.
        • Leschziner A.E.
        • Reck-Peterson S.L.
        Mechanism and regulation of cytoplasmic dynein.
        Annu Rev Cell Dev Biol. 2015; 31: 83-108
        • Chu Y.
        • Morfini G.A.
        • Langhamer L.B.
        • He Y.
        • Brady S.T.
        • Kordower J.H.
        Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease.
        Brain. 2012; 135: 2058-2073
        • Kimura N.
        • Imamura O.
        • Ono F.
        • Terao K.
        Aging attenuates dynactin-dynein interaction: down-regulation of dynein causes accumulation of endogenous tau and amyloid precursor protein in human neuroblastoma cells.
        J Neurosci Res. 2007; 85: 2909-2916
        • Franklin K.
        • Paxinos G.
        • Keith B.
        The mouse brain in stereotaxic coordinates.
        Rat Brain in Stereotaxic Coordinates. 2008; 3: 6
        • Bustin S.A.
        • Benes V.
        • Garson J.A.
        • Hellemans J.
        • Huggett J.
        • Kubista M.
        • et al.
        The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.
        Clin Chem. 2009; 55: 611-622
        • Clayton D.F.
        • George J.M.
        Synucleins in synaptic plasticity and neurodegenerative disorders.
        J Neurosci Res. 1999; 58: 120-129
        • Goedert M.
        • Jakes R.
        • Spillantini M.G.
        The synucleinopathies: twenty years on.
        J Parkinsons Dis. 2017; 7: S51-S69
        • Uversky V.N.
        • Li J.
        • Souillac P.
        • Millett I.S.
        • Doniach S.
        • Jakes R.
        • et al.
        Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins.
        J Biol Chem. 2002; 277: 11970-11978
        • Roodveldt C.
        • Andersson A.
        • De Genst E.J.
        • Labrador-Garrido A.
        • Buell A.K.
        • Dobson C.M.
        • et al.
        A rationally designed six-residue swap generates comparability in the aggregation behavior of α-synuclein and β-synuclein.
        Biochemistry. 2012; 51: 8771-8778
        • Murphy D.D.
        • Rueter S.M.
        • Trojanowski J.Q.
        • Lee V.M.
        Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons.
        J Neurosci. 2000; 20: 3214-3220
        • Yang X.
        • Williams J.K.
        • Yan R.
        • Mouradian M.M.
        • Baum J.
        Increased dynamics of α-synuclein fibrils by β-synuclein leads to reduced seeding and cytotoxicity.
        Sci Rep. 2019; 9: 17579
        • Raina A.
        • Leite K.
        • Guerin S.
        • Mahajani S.U.
        • Chakrabarti K.S.
        • Voll D.
        • et al.
        Dopamine promotes the neurodegenerative potential of β-synuclein.
        J Neurochem. 2021; 156: 674-691
        • Lim S.
        • Kim H.-J.
        • Kim D.-K.
        • Lee S.-J.
        Non-cell-autonomous actions of α-synuclein: Implications in glial synucleinopathies.
        Prog Neurobiol. 2018; 169: 158-171
        • Gu X.L.
        • Long C.X.
        • Sun L.
        • Xie C.
        • Lin X.
        • Cai H.
        Astrocytic expression of Parkinson's disease-related A53T alpha-synuclein causes neurodegeneration in mice.
        Mol Brain. 2010; 3: 12
        • Goedert M.
        • Masuda-Suzukake M.
        • Falcon B.
        Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration.
        Brain. 2017; 140: 266-278
        • López-Otín C.
        • Blasco M.A.
        • Partridge L.
        • Serrano M.
        • Kroemer G.
        The hallmarks of aging.
        Cell. 2013; 153: 1194-1217
        • Lye R.J.
        • Porter M.E.
        • Scholey J.M.
        • McIntosh J.R.
        Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans.
        Cell. 1987; 51: 309-318
        • Waterman-Storer C.M.
        • Karki S.B.
        • Kuznetsov S.A.
        • Tabb J.S.
        • Weiss D.G.
        • Langford G.M.
        • et al.
        The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport.
        Proc Natl Acad Sci U S A. 1997; 94: 12180-12185
        • Kimura N.
        • Inoue M.
        • Okabayashi S.
        • Ono F.
        • Negishi T.
        Dynein dysfunction induces endocytic pathology accompanied by an increase in Rab GTPases: a potential mechanism underlying age-dependent endocytic dysfunction.
        J Biol Chem. 2009; 284: 31291-31302
        • Williams J.C.
        • Xie H.
        • Hendrickson W.A.
        Crystal structure of dynein light chain TcTex-1.
        J Biol Chem. 2005; 280: 21981-21986
        • Dong S.
        • Zhang Y.
        • Ming J.
        • Zhang X.
        • Li X.
        • Xu J.
        • et al.
        Tctex1 plays a key role in the α-synuclein autophagy lysosomal degradation pathway.
        Neurosci Lett. 2017; 661: 90-95
        • LaMonte B.H.
        • Wallace K.E.
        • Holloway B.A.
        • Shelly S.S.
        • Ascaño J.
        • Tokito M.
        • et al.
        Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration.
        Neuron. 2002; 34: 715-727
        • Lai C.
        • Lin X.
        • Chandran J.
        • Shim H.
        • Yang W.-J.
        • Cai H.
        The G59S mutation in p150(glued) causes dysfunction of dynactin in mice.
        J Neurosci. 2007; 27: 13982-13990
        • Fujiwara T.
        • Morimoto K.
        • Kakita A.
        • Takahashi H.
        Dynein and dynactin components modulate neurodegeneration induced by excitotoxicity.
        J Neurochem. 2012; 122: 162-174
        • Wang C.
        • Telpoukhovskaia M.A.
        • Bahr B.A.
        • Chen X.u.
        • Gan L.i.
        Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases.
        Curr Opin Neurobiol. 2018; 48: 52-58
        • Condon K.J.
        • Sabatini D.M.
        Nutrient regulation of mTORC1 at a glance.
        J Cell Sci. 2019; 132: jcs222570
        • Frühbeis C.
        • Fröhlich D.
        • Kuo W.P.
        • Amphornrat J.
        • Thilemann S.
        • Saab A.S.
        • et al.
        Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication.
        PLoS Biol. 2013; 11: e1001604
        • Clarke P.G.
        Developmental cell death: morphological diversity and multiple mechanisms.
        Anat Embryol (Berl). 1990; 181: 195-213
        • Debnath J.
        • Baehrecke E.H.
        • Kroemer G.
        Does autophagy contribute to cell death?.
        Autophagy. 2005; 1: 66-74
        • Chu C.T.
        Autophagic stress in neuronal injury and disease.
        J Neuropathol Exp Neurol. 2006; 65: 423-432
        • Cherra 3rd S.J.
        • Chu C.T.
        Autophagy in neuroprotection and neurodegeneration: a question of balance.
        Future Neurol. 2008; 3: 309-323
        • Yap Y.W.
        • Llanos R.M.
        • La Fontaine S.
        • Cater M.A.
        • Beart P.M.
        • Cheung N.S.
        Comparative microarray analysis identifies commonalities in neuronal injury: evidence for oxidative stress, dysfunction of calcium signalling, and inhibition of autophagy-lysosomal pathway.
        Neurochem Res. 2016; 41: 554-567
        • Yin Y.
        • Sun G.
        • Li E.
        • Kiselyov K.
        • Sun D.
        ER stress and impaired autophagy flux in neuronal degeneration and brain injury.
        Ageing Res Rev. 2017; 34: 3-14
        • Zhu J.H.
        • Guo F.
        • Shelburne J.
        • Watkins S.
        • Chu C.T.
        Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases.
        Brain Pathol. 2003; 13: 473-481
        • Schmidt M.F.
        • Gan Z.Y.
        • Komander D.
        • Dewson G.
        Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities.
        Cell Death Differ. 2021; 28: 570-590
        • Ghavami S.
        • Shojaei S.
        • Yeganeh B.
        • Ande S.R.
        • Jangamreddy J.R.
        • Mehrpour M.
        • et al.
        Autophagy and apoptosis dysfunction in neurodegenerative disorders.
        Prog Neurobiol. 2014; 112: 24-49
        • Mizushima N.
        Methods for monitoring autophagy.
        Int J Biochem Cell Biol. 2004; 36: 2491-2502
        • Aparicio I.M.
        • Martin Muñoz P.
        • Salido G.M.
        • Peña F.J.
        • Tapia J.A.
        The autophagy-related protein LC3 is processed in stallion spermatozoa during short-and long-term storage and the related stressful conditions.
        Animal. 2016; 10: 1182-1191
        • Duguay D.
        • Bélanger-Nelson E.
        • Mongrain V.
        • Beben A.
        • Khatchadourian A.
        • Cermakian N.
        • et al.
        Dynein light chain Tctex-type 1 modulates orexin signaling through its interaction with orexin 1 receptor.
        PLoS ONE. 2011; 6: e26430
        • Pavlos N.J.
        • Cheng T.S.
        • Qin A.
        • Ng P.Y.
        • Feng H.-T.
        • Ang E.S.M.
        • et al.
        Tctex-1, a novel interaction partner of Rab3D, is required for osteoclastic bone resorption.
        Mol Cell Biol. 2011; 31: 1551-1564
        • Rapali P.
        • Szenes A.
        • Radnai L.
        • Bakos A.
        • Pal G.
        • Nyitray L.
        DYNLL/LC8: a light chain subunit of the dynein motor complex and beyond.
        FEBS J. 2011; 278: 2980-2996
        • McCormack A.
        • Keating D.J.
        • Chegeni N.
        • Colella A.
        • Wang J.J.
        • Chataway T.
        Abundance of synaptic vesicle-related proteins in alpha-synuclein-containing protein inclusions suggests a targeted formation mechanism.
        Neurotox Res. 2019; 35: 883-897
        • Ripon M.K.H.
        • Lee HyunSook
        • Dash R.
        • Choi H.J.
        • Oktaviani D.F.
        • Moon I.S.
        • et al.
        N-acetyl-D-glucosamine kinase binds dynein light chain roadblock 1 and promotes protein aggregate clearance.
        Cell Death Dis. 2020; 11: 619
        • Hafezparast M.
        • Klocke R.
        • Ruhrberg C.
        • Marquardt A.
        • Ahmad-Annuar A.
        • Bowen S.
        • et al.
        Mutations in dynein link motor neuron degeneration to defects in retrograde transport.
        Science. 2003; 300: 808-812
        • Chu Y.
        • Dodiya H.
        • Aebischer P.
        • Olanow C.W.
        • Kordower J.H.
        Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions.
        Neurobiol Dis. 2009; 35: 385-398