Intraoperative radiotherapy for glioblastoma: A systematic review of techniques and outcomes


      • IORT for glioblastoma is delivered after excision, and is followed by adjuvant treatment with external beam radiotherapy with or without chemotherapy.
      • Complications are few but may include radiation necrosis, infection, hematoma, perilesional edema, and wound dehiscence.
      • IORT resulted in improved local control and comparable overall survival rates with the Stupp protocol.
      • The overall effect of IORT on GBM treatment is still inconclusive due to the small number of patients and heterogeneous reporting of data.



      Despite multimodality treatment, the prognosis of glioblastoma (GBM) has remained poor. Intraoperative radiation therapy (IORT) offers additional local control by directly applying a radiation source to the resection margin, where most recurrences occur.


      We performed a systematic review on the oncologic outcomes and toxicities of IORT for GBM in the era of modern external beam radiation therapy (EBRT) and chemotherapy with temozolamide.


      Four studies representing 123 patients were included. Majority (81%) were newly diagnosed, and gross total resection was reported in 13–80% of cases. IORT modalities included electrons from a linear accelerator (LINAC) and photons from a 50-kV x-ray device. Median doses were from 12.5 to 20 Gy for electron-based studies and 10–25 Gy for photon-based studies. Adjuvant treatment consisted of 46–60 Gy post-operative EBRT in electron-based studies and the Stupp protocol in photon-based studies. Complications included radiation necrosis (2.8–33%), infection, hematoma, perilesional edema, and wound dehiscence. Median time to local recurrence was 9.9–16 months and the reported overall progression-free survival was 11.2–12.2 months. Median overall survival was 13–14.2 months for the electron-based studies and 13.8–18 months for the photon-based studies.


      IORT resulted in improved local control and comparable overall survival rates with the Stupp protocol. Although photon-based IORT had better results than electron IORT, this may be due to improvements in other forms of adjuvant treatment rather than the IORT modality itself. The overall effect of IORT on GBM treatment is still inconclusive due to the small number of patients and heterogeneous reporting of data.


      To read this article in full you will need to make a payment


      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-sloan JS. Neuro-Oncology CBTRUS Statistical Report : Primary Brain and Other Central Nervous System Tumors Diagnosed in the. 2020;22:1-96. doi:10.1093/neuonc/noaa200.

        • Tan A.C.
        • Ashley D.M.
        • López G.Y.
        • Malinzak M.
        • Friedman H.S.
        • Khasraw M.
        Management of glioblastoma: State of the art and future directions.
        CA Cancer J Clin. 2020; 70: 299-312
        • Stupp R.
        • Mason W.P.
        • van den Bent M.J.
        • Weller M.
        • Fisher B.
        • Taphoorn M.J.B.
        • et al.
        Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 352: 987-996
        • Stupp R.
        • Taillibert S.
        • Kanner A.A.
        • Kesari S.
        • Steinberg D.M.
        • Toms S.A.
        • et al.
        Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma.
        JAMA. 2015; 314: 2535
        • Petrecca K.
        • Guiot M.C.
        • Panet-Raymond V.
        • Souhami L.
        Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma.
        J Neurooncol. 2013; 111: 19-23
        • Gilbert M.R.
        • Dignam J.J.
        • Armstrong T.S.
        • Wefel J.S.
        • Blumenthal D.T.
        • Vogelbaum M.A.
        • et al.
        A randomized trial of bevacizumab for newly diagnosed glioblastoma.
        N Engl J Med. 2014; 370: 699-708
        • Gilbert M.R.
        • Wang M.
        • Aldape K.D.
        • Stupp R.
        • Hegi M.E.
        • Jaeckle K.A.
        • et al.
        Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial.
        J Clin Oncol. 2013; 31: 4085-4091
        • Westphal M.
        • Heese O.
        • Steinbach J.P.
        • Schnell O.
        • Schackert G.
        • Mehdorn M.
        • et al.
        A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma.
        Eur J Cancer. 2015; 51: 522-532
        • Massaccesi M.
        • Ferro M.
        • Cilla S.
        • Balducci M.
        • Deodato F.
        • Macchia G.
        • et al.
        Accelerated intensity-modulated radiotherapy plus temozolomide in patients with glioblastoma: a phase i dose-escalation study (ISIDE-BT-1).
        Int J Clin Oncol. 2013; 18: 784-791
        • Reddy K.
        • Damek D.
        • Gaspar L.E.
        • Ney D.
        • Waziri A.
        • Lillehei K.
        • et al.
        Phase II trial of hypofractionated IMRT with temozolomide for patients with newly diagnosed glioblastoma multiforme.
        Int J Radiat Oncol Biol Phys. 2012; 84: 655-660
        • Tsien C.I.
        • Brown D.
        • Normolle D.
        • Schipper M.
        • Piert M.
        • Junck L.
        • et al.
        Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma.
        Clin Cancer Res. 2012; 18: 273-279
        • Yoon S.M.
        • Kim J.H.
        • Kim S.J.
        • Khang S.K.
        • Shin S.S.
        • Cho Y.H.
        • et al.
        Hypofractionated intensity-modulated radiotherapy using simultaneous integrated boost technique with concurrent and adjuvant temozolomide for glioblastoma.
        Tumori J. 2013; 99: 480-487
        • Iuchi T.
        • Hatano K.
        • Kodama T.
        • Sakaida T.
        • Yokoi S.
        • Kawasaki K.
        • et al.
        Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosed glioblastoma.
        Int J Radiat Oncol Biol Phys. 2014; 88: 793-800
        • Badiyan S.N.
        • Markovina S.
        • Simpson J.R.
        • Robinson C.G.
        • DeWees T.
        • Tran D.D.
        • et al.
        Radiation therapy dose escalation for glioblastoma multiforme in the era of temozolomide.
        Int J Radiat Oncol Biol Phys. 2014; 90: 877-885
        • Combs S.E.
        • Debus J.
        • Schulz-Ertner D.
        Radiotherapeutic alternatives for previously irradiated recurrent gliomas.
        BMC Cancer. 2007; 7: 1-11
        • Pilar A.
        • Gupta M.
        • Laskar S.G.
        • Laskar S.
        Intraoperative radiotherapy: review of techniques and results.
        Ecancermedicalscience. 2017; 11
        • Giordano F.A.
        • Wenz F.
        • Petrecca K.
        Rationale for intraoperative radiotherapy in glioblastoma.
        J Neurosurg Sci. 2016; 60: 350-356
        • Zamzuri I.
        • Rahman G.
        • Muzaimi M.
        • et al.
        Polymodal therapy for high grade gliomas: a case report of favourable outcomes following intraoperative radiation therapy.
        Med J Malaysia. 2012; 67: 121-122
        • Matsuo M.
        • Shinoda J.
        • Miwa K.
        • Yano H.
        • Iwama T.
        • Hayashi S.
        • et al.
        Stereotactic radiosurgery for patients with newly diagnosed glioblastoma multiforme (GBM): comparison with intra-operative radiotherapy and evaluation of prognostic factors.
        J Radiother Pract. 2007; 6: 143-152
        • Welsh J.
        • Sanan A.
        • Gabayan A.J.
        • Green S.B.
        • Lustig R.
        • Burri S.
        • et al.
        GliaSite brachytherapy boost as part of initial treatment of glioblastoma multiforme: a retrospective multi-institutional pilot study.
        Int J Radiat Oncol Biol Phys. 2007; 68: 159-165
        • Schueller P.
        • Micke O.
        • Palkovic S.
        • Schroeder J.
        • Moustakis C.
        • Bruns F.
        • et al.
        12 Years’ experience with intraoperative radiotherapy (IORT) of malignant gliomas12-Jahres-Erfahrungen mit der intraoperativen Strahlentherapie (IORT) bei malignen Gliomen.
        Strahlentherapie und Onkol. 2005; 181: 500-506
        • Usychkin S.
        • Calvo F.
        • dos Santos M.A.
        • Samblás J.
        • de Urbina D.O.
        • Bustos J.C.
        • et al.
        Intra-operative electron beam radiotherapy for newly diagnosed and recurrent malignant gliomas: feasibility and long-term outcomes.
        Clin Transl Oncol. 2013; 15: 33-38
      2. Giordano FA, Brehmer S, Mürle B, et al. Intraoperative Radiotherapy in Newly Diagnosed Glioblastoma (INTRAGO): An open-label, dose-escalation Phase I/II trial. Clin Neurosurg. 2019;84(1):41-49. doi:10.1093/neuros/nyy018.

        • Sarria G.R.
        • Sperk E.
        • Han X.
        • Sarria G.J.
        • Wenz F.
        • Brehmer S.
        • et al.
        Intraoperative radiotherapy for glioblastoma: an international pooled analysis.
        Radiother Oncol. 2020; 142: 162-167
        • Pennington C.
        • Kilbride L.
        • Grant R.
        • Wardlaw J.M.
        A pilot study of brain tumour growth between radiotherapy planning and delivery.
        Clin Oncol. 2006; 18: 104-108
        • Blumenthal D.T.
        • Won M.
        • Mehta M.P.
        • et al.
        Short delay in initiation of radiotherapy for patients with glioblastoma-effect of concurrent chemotherapy: a secondary analysis from the NRG Oncology/Radiation Therapy Oncology Group database.
        Neuro Oncol. 2018; 20: 966-974
        • Gao X.
        • McDonald J.T.
        • Hlatky L.
        • Enderling H.
        Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics.
        Cancer Res. 2013; 73: 1481-1490
        • Halperin E.C.
        • Burger P.C.
        • Bullard D.E.
        The fallacy of the localized supratentorial malignant glioma.
        Int J Radiat Oncol. 1988; 15: 505-509
        • Wallner K.E.
        • Galicich J.H.
        • Krol G.
        • Arbit E.
        • Malkin M.G.
        Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma.
        Int J Radiat Oncol Biol Phys. 1989; 16: 1405-1409
        • Hochberg F.H.
        • Pruitt A.
        Assumptions in the radiotherapy of glioblastoma.
        Neurology. 1980; 30: 907-911
        • Ening G.
        • Osterheld F.
        • Capper D.
        • Schmieder K.
        • Brenke C.
        Risk factors for glioblastoma therapy associated complications.
        Clin Neurol Neurosurg. 2015; 134: 55-59
        • Saran F.
        • Chinot O.L.
        • Henriksson R.
        • Mason W.
        • Wick W.
        • Cloughesy T.
        • et al.
        Bevacizumab, temozolomide, and radiotherapy for newly diagnosed glioblastoma: comprehensive safety results during and after first-line therapy.
        Neuro Oncol. 2016; 18: 991-1001
        • Chao S.T.
        • Ahluwalia M.S.
        • Barnett G.H.
        • Stevens G.H.J.
        • Murphy E.S.
        • Stockham A.L.
        • et al.
        Challenges with the diagnosis and treatment of cerebral radiation necrosis.
        Int J Radiat Oncol Biol Phys. 2013; 87: 449-457
        • Doré M.
        • Martin S.
        • Delpon G.
        • Clément K.
        • Campion L.
        • Thillays F.
        Stereotactic radiotherapy following surgery for brain metastasis: predictive factors for local control and radionecrosis.
        Cancer/Radiotherapie. 2017; 21: 4-9
        • Giordano F.A.
        • Brehmer S.
        • Abo-Madyan Y.
        • Welzel G.
        • Sperk E.
        • Keller A.
        • et al.
        INTRAGO: Intraoperative radiotherapy in glioblastoma multiforme - a Phase I/II dose escalation study.
        BMC Cancer. 2014; 14
        • Ruben J.D.
        • Dally M.
        • Bailey M.
        • Smith R.
        • McLean C.A.
        • Fedele P.
        Cerebral radiation necrosis: Incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy.
        Int J Radiat Oncol Biol Phys. 2006; 65: 499-508
        • Chaichana K.L.
        • Cabrera-Aldana E.E.
        • Jusue-Torres I.
        • Wijesekera O.
        • Olivi A.
        • Rahman M.
        • et al.
        When gross total resection of a glioblastoma is possible, how much resection should be achieved?.
        World Neurosurg. 2014; 82: e257-e265
        • Salvati M.
        • Pichierri A.
        • Piccirilli M.
        • Floriana Brunetto G.M.
        • D'Elia A.
        • Artizzu S.
        • et al.
        Extent of tumor removal and molecular markers in cerebral glioblastoma: a combined prognostic factors study in a surgical series of 105 patients - Clinical article.
        J Neurosurg. 2012; 117: 204-211
        • Incekara F.
        • Koene S.
        • Vincent A.J.P.E.
        • van den Bent M.J.
        • Smits M.
        Association between supratotal glioblastoma resection and patient survival: a systematic review and meta-analysis.
        World Neurosurg. 2019; 127: 617-624.e2
        • Brown T.J.
        • Brennan M.C.
        • Li M.
        • Church E.W.
        • Brandmeir N.J.
        • Rakszawski K.L.
        • et al.
        Association of the extent of resection with survival in glioblastoma a systematic review and meta-Analysis.
        JAMA Oncol. 2016; 2: 1460
        • Souhami L.
        • Seiferheld W.
        • Brachman D.
        • Podgorsak E.B.
        • Werner-Wasik M.
        • Lustig R.
        • et al.
        Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: Report of Radiation Therapy Oncology Group 93–05 protocol.
        Int J Radiat Oncol Biol Phys. 2004; 60: 853-860