Advertisement

The ‘swirl sign’ as a marker for haematoma expansion and outcome in intra-cranial haemorrhage: A meta-analysis

      Highlights

      • The ‘swirl sign’ is a CT finding traditionally associated with poor prognosis.
      • It consists of an area of hypo- or iso-density within the lesion.
      • It is a predictor of haematoma expansion and poor outcome.
      • It has excellent inter-rater reliability.

      Abstract

      The ‘swirl sign’ is a CT imaging finding associated with haematoma expansion and poor prognosis. We performed a systematic review and meta-analysis to determine its prognostic value. PubMed/MEDLINE and EMBASE were searched until 16/12/2020 for related articles. Articles detailing the relationship between the swirl sign and any of haematoma expansion (HE), neurological outcome in the form of Glasgow Outcome Score (GOS) or mortality were included. A meta-analysis was performed and the pooled sensitivity, specificity, positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were calculated for each of HE, GOS and mortality. 15 papers were assessed. Nine papers related to HE, for which the pooled sensitivity was 50% (95% CI 30–71), specificity was 77% (95%CI 67–85) and PLR was 2.16 (95%CI 1.89–2.42). There was significant heterogeneity (I2 = 70%, Q = 26.9). Three papers related to GOS, for which the pooled sensitivity was 45% (95%CI 20–74), specificity was 78.3% (95%CI 40–95.2) and PLR was 1.77 (95%CI 1.04–2.62). Three papers related to mortality, for which the pooled sensitivity was 65% (95% CI 32–88), specificity was 75% (95%CI 42–92) and pooled PLR was 2.64 (95%CI 1.60–4.13). Our findings indicated that the swirl sign is a useful prognostic marker in the radiological evaluation of intracranial haemorrhage. However, more research is needed to assess its independence from other risk factors for haematoma expansion.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Monro A.
        Observations on the structure and functions of the nervous sytem: illustrated with tables.
        London Med J. 1783; 4
        • Kellie G.
        On death from cold and on congestions of the brain.
        R Coll Surg Engl. 1824;
        • Burrows G.
        On disorders of the cerebral circulation; and on the connection between affections of the brain and diseases of the heart.
        Longman, Brown, Green and Longmans1846
        • Maas A.I.R.
        • Menon D.K.
        • Adelson P.D.
        • Andelic N.
        • Bell M.J.
        • Belli A.
        • et al.
        Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research.
        Lancet Neurol. 2017; 16: 987-1048https://doi.org/10.1016/S1474-4422(17)30371-X
        • Feigin V.L.
        • Krishnamurthi R.V.
        • Parmar P.
        • Norrving B.
        • Mensah G.A.
        • Bennett D.A.
        • et al.
        Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990–2013: The GBD 2013 Study.
        Neuroepidemiology. 2015; 45: 161-176https://doi.org/10.1159/000441085
        • Li Z.
        • You M.
        • Long C.
        • Bi R.
        • Xu H.
        • He Q.
        • et al.
        Hematoma expansion in intracerebral hemorrhage: an update on prediction and treatment.
        Front Neurol. 2020; 11: 702https://doi.org/10.3389/fneur.2020.00702
        • Fischbein N.J.
        • Wijman C.A.C.
        Nontraumatic intracranial hemorrhage.
        Neuroimaging Clin N Am. 2010; 20: 469-492https://doi.org/10.1016/j.nic.2010.07.003
        • Bullock M.R.
        • Chesnut R.
        • Ghajar J.
        • Gordon D.
        • Hartl R.
        • Newell D.W.
        • et al.
        Surgical management of traumatic parenchymal lesions.
        Neurosurgery. 2006; 58https://doi.org/10.1227/01.NEU.0000210365.36914.E3
        • Morotti A.
        • Arba F.
        • Boulouis G.
        • Charidimou A.
        Noncontrast CT markers of intracerebral hemorrhage expansion and poor outcome: A meta-analysis.
        Neurology. 2020; 95: 632-643https://doi.org/10.1212/WNL.0000000000010660
        • Greenberg J.
        • Cohen W.A.
        • Cooper P.R.
        The “hyperacute” extraaxial intracranial hematoma: Computed tomographic findings and clinical significance.
        Neurosurgery. 1985; 17: 48-56https://doi.org/10.1227/00006123-198507000-00008
        • Yu Z.
        • Zheng J.
        • He M.
        • Guo R.
        • Ma L.
        • You C.
        • et al.
        Accuracy of swirl sign for predicting hematoma enlargement in intracerebral hemorrhage: a meta-analysis.
        J Neurol Sci. 2019; 399: 155-160https://doi.org/10.1016/j.jns.2019.02.032
        • Salameh J.P.
        • Bossuyt P.M.
        • McGrath T.A.
        • Thombs B.D.
        • Hyde C.J.
        • MacAskill P.
        • et al.
        Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): Explanation, elaboration, and checklist.
        BMJ. 2020; 370: 2632https://doi.org/10.1136/bmj.m2632
        • Whiting P.
        • Rutjes A.W.
        • Reitsma J.B.
        • Bossuyt P.M.
        • Kleijnen J.
        The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews.
        BMC Med Res Methodol. 2003; 3: 25https://doi.org/10.1186/1471-2288-3-25
        • Shim S.R.
        • Kim S.J.
        • Lee J.
        Diagnostic test accuracy: application and practice using R software.
        Epidemiol Health. 2019; 41e2019007https://doi.org/10.4178/epih.e2019007
        • Zwinderman A.H.
        • Bossuyt P.M.
        We should not pool diagnostic likelihood ratios in systematic reviews.
        Stat Med. 2008; 27: 687-697https://doi.org/10.1002/sim.2992
        • Reitsma J.B.
        • Glas A.S.
        • Rutjes A.W.S.
        • Scholten R.J.P.M.
        • Bossuyt P.M.
        • Zwinderman A.H.
        Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.
        J Clin Epidemiol. 2005; 58: 982-990https://doi.org/10.1016/j.jclinepi.2005.02.022
        • Ng D.
        • Churilov L.
        • Mitchell P.
        • Dowling R.
        • Yan B.
        The CT swirl sign is associated with hematoma expansion in intracerebral hemorrhage.
        Am J Neuroradiol. 2018; 39: 232-237https://doi.org/10.3174/ajnr.A5465
        • Park B.K.
        • Kwak H.S.
        • Chung G.H.
        • Hwang S.B.
        Diagnostic value of swirl sign on noncontrast computed tomography and spot sign on computed tomographic angiography to predict intracranial hemorrhage expansion.
        Clin Neurol Neurosurg. 2019; 182: 130-135https://doi.org/10.1016/j.clineuro.2019.05.013
      1. Xiong X, Li Q, Yang WS, Wei X, Hu X, Wang XC, et al. Comparison of swirl sign and black hole sign in predicting early hematoma growth in patients with spontaneous intracerebral hemorrhage. Med Sci Monit 2018;24:567–73. 10.12659/MSM.906708.

        • Morotti A.
        • Boulouis G.
        • Romero J.M.
        • Brouwers H.B.
        • Jessel M.J.
        • Vashkevich A.
        • et al.
        Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion.
        Neurology. 2017; 89: 548-554https://doi.org/10.1212/WNL.0000000000004210
        • Quintas-Neves M.
        • Marques L.
        • Silva L.
        • Amorim J.M.
        • Ferreira C.
        • Pinho J.
        Noncontrast computed tomography markers of outcome in intracerebral hemorrhage patients.
        Neurol Res. 2019; 41: 1083-1089https://doi.org/10.1080/01616412.2019.1673279
        • Huang Y.
        • Zhang Q.
        • Yang M.
        A reliable grading system for prediction of hematoma expansion in intracerebral hemorrhage in the basal ganglia.
        Biosci Trends. 2018; 12: 193-200https://doi.org/10.5582/bst.2018.01061
        • Cai J.
        • Zhu H.
        • Yang D.
        • Yang R.
        • Zhao X.
        • Zhou J.
        • et al.
        Accuracy of imaging markers on noncontrast computed tomography in predicting intracerebral hemorrhage expansion.
        Neurol Res. 2020; 42: 1-7https://doi.org/10.1080/01616412.2020.1795577
        • Connor D.
        • Huynh T.J.
        • Demchuk A.M.
        • Dowlatshahi D.
        • Gladstone D.J.
        • Subramaniapillai S.
        • et al.
        Swirls and spots: relationship between qualitative and quantitative hematoma heterogeneity, hematoma expansion, and the spot sign.
        Neurovascular Imaging. 2015; 1: 8https://doi.org/10.1186/s40809-015-0010-1
        • Boulouis G.
        • Morotti A.
        • Bart Brouwers H.
        • Charidimou A.
        • Jessel M.J.
        • Auriel E.
        • et al.
        Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage.
        JAMA Neurol. 2016; 73: 961-968https://doi.org/10.1001/jamaneurol.2016.1218
        • Guo C.
        • Liu L.
        • Wang B.
        • Wang Z.
        Swirl sign in traumatic acute epidural hematoma: prognostic value and surgical management.
        Neurol Sci. 2017; 38: 2111-2116https://doi.org/10.1007/s10072-017-3121-4
        • Wang X.
        • Ge R.
        • Yuan J.
        • Xu S.
        • Fang X.
        • Dai Y.
        • et al.
        Risk factors and prognostic value of swirl sign in traumatic acute epidural hematoma.
        Front Neurol. 2020;11.; https://doi.org/10.3389/fneur.2020.543536
        • Subramanian S.K.
        • Roszler M.H.
        • Gaudy B.
        • Michael D.B.
        Significance of computed tomography mixed density in traumatic extra-axial hemorrhage.
        Neurol Res. 2002; 24: 125-128https://doi.org/10.1179/016164102101199657
        • Selariu E.
        • Zia E.
        • Brizzi M.
        • Abul-Kasim K.
        Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value.
        BMC Neurol. 2012; 12https://doi.org/10.1186/1471-2377-12-109
        • Brouwers H.B.
        • Greenberg S.M.
        Hematoma expansion following acute intracerebral hemorrhage.
        Cerebrovasc Dis. 2013; 35: 195-201https://doi.org/10.1159/000346599
        • Delcourt C.
        • Huang Y.
        • Arima H.
        • Chalmers J.
        • Davis S.M.
        • Heeley E.L.
        • et al.
        Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study.
        Neurology. 2012; 79: 314-319https://doi.org/10.1212/WNL.0b013e318260cbba
        • Dowlatshahi D.
        • Demchuk A.M.
        • Flaherty M.L.
        • Ali M.
        • Lyden P.L.
        • Smith E.E.
        Defining hematoma expansion in intracerebral hemorrhage: Relationship with patient outcomes.
        Neurology. 2011; 76: 1238-1244https://doi.org/10.1212/WNL.0b013e3182143317
        • Brouwers H.B.
        • Chang Y.
        • Falcone G.J.
        • Cai X.
        • Ayres A.M.
        • Battey T.W.K.
        • et al.
        Predicting hematoma expansion after primary intracerebral hemorrhage.
        JAMA Neurol. 2014; 71: 158-164https://doi.org/10.1001/jamaneurol.2013.5433
        • Mayer S.A.
        • Davis S.M.
        • Skolnick B.E.
        • Brun N.C.
        • Begtrup K.
        • Broderick J.P.
        • et al.
        Can a subset of intracerebral hemorrhage patients benefit from hemostatic therapy with recombinant activated factor VII?.
        Stroke. 2009; 40: 833-840https://doi.org/10.1161/STROKEAHA.108.524470
        • Bossuyt P.
        • Davenport C.
        • Deeks J.
        • Hyde C.
        • Leeflang M.
        • Scholten R.
        Cochrane handbook for systematic reviews of diagnostic test accuracy.
        The Cochrane Collaboration. 2013;
        • Lee J.
        • Kim K.W.
        • Choi S.H.
        • Huh J.
        • Park S.H.
        Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: A practical review for clinical researchers–part II. Statistical methods of meta-analysis.
        Korean J Radiol. 2015; 1: 1188-1196https://doi.org/10.3348/kjr.2015.16.6.1188
        • Zimmerman R.A.
        • Bilaniuk L.T.
        Computed tomographic staging of traumatic epidural bleeding.
        Radiology. 1982; 144: 809-812https://doi.org/10.1148/radiology.144.4.7111729
        • Samolsky B.G.
        • Dekel P.M.
        • Sorella M.C.
        • Gori A.
        • Vasarri A.
        • et al.
        Development and performance of a diagnostic/prognostic scoring system for breakthrough pain.
        J Pain Res. 2007; 10: 1327-1335https://doi.org/10.2147/JPR.S126132