Advertisement
Clinical study| Volume 84, P1-7, February 2021

Download started.

Ok

Prognostic relevance of CSF and peri-tumoral edema volumes in glioblastoma

      Highlights

      • First prognostic assessment of brain components that surround glioblastoma.
      • Cranial CSF volume associates with survival in glioblastoma patients.
      • Demonstration of consistent findings in two available datasets (institutional and TCGA/TCIA).
      • Use of robust statistical and survival analyses.

      Abstract

      Background

      We conducted a segmental volumetric analysis of pre-operative brain magnetic resonance images (MRIs) of glioblastoma patients to identify brain- and tumor-related features that are prognostic of survival.

      Methods

      Using a dataset of 210 single-institutional adult glioblastoma patients, total volumes of the following tumor- and brain-related features were quantified on pre-operative MRIs using a fully automated segmentation tool: tumor enhancement, tumor non-enhancement, tumor necrosis, peri-tumoral edema, grey matter, white matter, and cerebrospinal fluid (CSF). Their association with survival using Cox regression models, adjusting for the well-known predictors of glioblastoma survival. The findings were verified in a second dataset consisting of 96 glioblastoma patients from The Cancer Imaging Archive and The Cancer Genome Atlas (TCIA/TCGA).

      Results

      CSF volume and edema were independently and consistently associated with overall survival of glioblastoma patients in both datasets. Greater edema was associated with increased hazard or decreased survival [adjusted hazard ratio (aHR) with 95% confidence interval (CI): 1.34 [1.08–1.67], p = 0.008 (institutional dataset); and, 1.44 [1.08–1.93], p = 0.013 (TCIA/TCGA dataset)]. Greater CSF volume also correlated with increased hazard or decreased survival [aHR 1.27 [1.02–1.59], p = 0.035 (institutional dataset), and 1.42 [1.03–1.95], p = 0.032 (TCIA/TCGA dataset)].

      Conclusions

      Higher brain CSF volume and higher edema levels at diagnosis are independently associated with decreased survival in glioblastoma patients. These results highlight the importance of a broader, quantitative brain-wide radiological analyses and invite investigations to understand tumor-related causes of increased edema and possibly increased CSF volume.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chaichana K.
        • Parker S.
        • Olivi A.
        • Quiñones-Hinojosa A.
        A proposed classification system that projects outcomes based on preoperative variables for adult patients with glioblastoma multiforme.
        J Neurosurg. 2010; 112: 997-1004https://doi.org/10.3171/2009.9.JNS09805
        • Grabowski M.M.
        • Recinos P.F.
        • Nowacki A.S.
        • Schroeder J.L.
        • Angelov L.
        • Barnett G.H.
        • Vogelbaum M.A.
        Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma.
        J Neurosurg. 2014; 121: 1115-1123https://doi.org/10.3171/2014.7.JNS132449
        • Gutman D.A.
        • Cooper L.A.
        • Hwang S.N.
        • Holder C.A.
        • Gao J.
        • Aurora T.D.
        • et al.
        MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set.
        Radiology. 2013; 267: 560-569https://doi.org/10.1148/radiol.13120118
        • Han S.
        • Li X.
        • Qiu B.o.
        • Jiang T.
        • Wu A.
        Can lateral ventricle contact predict the ontogeny and prognosis of glioblastoma?.
        J Neurooncol. 2015; 124: 45-55https://doi.org/10.1007/s11060-015-1818-x
        • Mistry A.M.
        • Dewan M.C.
        • White-Dzuro G.A.
        • Brinson P.R.
        • Weaver K.D.
        • Thompson R.C.
        • Ihrie R.A.
        • Chambless L.B.
        Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.
        J Neurooncol. 2017; 132: 341-349https://doi.org/10.1007/s11060-017-2374-3
        • Nicolasjilwan M.
        • Hu Y.
        • Yan C.
        • Meerzaman D.
        • Holder C.A.
        • Gutman D.
        • et al.
        Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients.
        J Neuroradiol. 2015; 42: 212-221https://doi.org/10.1016/j.neurad.2014.02.006
        • Pope W.B.
        • Sayre J.
        • Perlina A.
        • Villablanca J.P.
        • Mischel P.S.
        • Cloughesy T.F.
        MR imaging correlates of survival in patients with high-grade gliomas.
        AJNR Am J Neuroradiol. 2005; 26: 2466-2474
        • Wu C.-X.
        • Lin G.-S.
        • Lin Z.-X.
        • Zhang J.-D.
        • Liu S.-Y.
        • Zhou C.-F.
        Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma.
        World J Surg Onc. 2015; 13: 97https://doi.org/10.1186/s12957-015-0496-7
        • Meier R.
        • Knecht U.
        • Loosli T.
        • Bauer S.
        • Slotboom J.
        • Wiest R.
        • Reyes M.
        Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry.
        Sci Rep. 2016; 6https://doi.org/10.1038/srep23376
        • BraTumIA Reyes M.
        (Brain Tumor Image Analysis). 2018;
        • Rios Velazquez E.
        • Meier R.
        • Dunn Jr W.D.
        • Alexander B.
        • Wiest R.
        • Bauer S.
        • Gutman D.A.
        • Reyes M.
        • Aerts H.J.W.L.
        Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features.
        Sci Rep. 2015; 5https://doi.org/10.1038/srep16822
        • Clark K.
        • Vendt B.
        • Smith K.
        • Freymann J.
        • Kirby J.
        • Koppel P.
        • Moore S.
        • Phillips S.
        • Maffitt D.
        • Pringle M.
        • Tarbox L.
        • Prior F.
        The cancer imaging archive (TCIA): maintaining and operating a public information repository.
        J Digit Imaging. 2013; 26: 1045-1057https://doi.org/10.1007/s10278-013-9622-7
      1. The Cancer Imaging Archive. The National Cancer Institute Web site. 2018.

        • Gao J.
        • Aksoy B.A.
        • Dogrusoz U.
        • Dresdner G.
        • Gross B.
        • Sumer S.O.
        • et al.
        Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
        Sci Signal. 2013; 6: pl1https://doi.org/10.1126/scisignal.2004088
        • Cerami E.
        • Gao J.
        • Dogrusoz U.
        • Gross B.E.
        • Sumer S.O.
        • Aksoy B.A.
        • et al.
        The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
        Cancer Discov. 2012; 2: 401-404https://doi.org/10.1158/2159-8290.CD-12-0095
        • Gutman D.A.
        • Dunn Jr, W.D.
        • Grossmann P.
        • Cooper L.A.D.
        • Holder C.A.
        • Ligon K.L.
        • Alexander B.M.
        • Aerts H.J.W.L.
        Somatic mutations associated with MRI-derived volumetric features in glioblastoma.
        Neuroradiology. 2015; 57: 1227-1237https://doi.org/10.1007/s00234-015-1576-7
        • Aghi M.
        • Gaviani P.
        • Henson J.W.
        • Batchelor T.T.
        • Louis D.N.
        • Barker 2nd, F.G.
        Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma.
        Clin Cancer Res. 2005; 11: 8600-8605https://doi.org/10.1158/1078-0432.CCR-05-0713
        • Boxerman J.L.
        • Zhang Z.
        • Safriel Y.
        • Rogg J.M.
        • Wolf R.L.
        • Mohan S.
        • et al.
        Prognostic value of contrast enhancement and FLAIR for survival in newly diagnosed glioblastoma treated with and without bevacizumab: results from ACRIN 6686.
        Neuro-oncology. 2018; 20: 1400-1410https://doi.org/10.1093/neuonc/noy049
        • Carrillo J.A.
        • Lai A.
        • Nghiemphu P.L.
        • Kim H.J.
        • Phillips H.S.
        • Kharbanda S.
        • Moftakhar P.
        • Lalaezari S.
        • Yong W.
        • Ellingson B.M.
        • Cloughesy T.F.
        • Pope W.B.
        Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma.
        AJNR Am J Neuroradiol. 2012; 33: 1349-1355https://doi.org/10.3174/ajnr.A2950
        • Garrett M.D.
        • Yanagihara T.K.
        • Yeh R.
        • McKhann G.M.
        • Sisti M.B.
        • Bruce J.N.
        • et al.
        Monitoring radiation treatment effects in glioblastoma: FLAIR volume as significant predictor of survival.
        Tomography. 2017; 3: 131-137https://doi.org/10.18383/j.tom.2017.00009
        • Liang H.T.
        • Chen W.Y.
        • Lai S.F.
        • Su M.Y.
        • You S.L.
        • Chen L.H.
        • et al.
        The extent of edema and tumor synchronous invasion into the subventricular zone and corpus callosum classify outcomes and radiotherapy strategies of glioblastomas.
        Radiother Oncol. 2017; 125: 248-257https://doi.org/10.1016/j.radonc.2017.09.024
        • Pessina F.
        • Navarria P.
        • Cozzi L.
        • Ascolese A.M.
        • Simonelli M.
        • Santoro A.
        • Clerici E.
        • Rossi M.
        • Scorsetti M.
        • Bello L.
        Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience.
        J Neurooncol. 2017; 135: 129-139https://doi.org/10.1007/s11060-017-2559-9
        • Li Y.M.
        • Suki D.
        • Hess K.
        • Sawaya R.
        The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection?.
        J Neurosurg. 2016; 124: 977-988https://doi.org/10.3171/2015.5.JNS142087
        • Lasocki A.
        • Gaillard F.
        Non-contrast-enhancing tumor: A new frontier in glioblastoma research.
        AJNR Am J Neuroradiol. 2019; 40: 758-765https://doi.org/10.3174/ajnr.A6025
        • Molinaro A.M.
        • Hervey-Jumper S.
        • Morshed R.A.
        • Young J.
        • Han S.J.
        • Chunduru P.
        • et al.
        Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma.
        JAMA Oncol. 2020; https://doi.org/10.1001/jamaoncol.2019.6143
        • Choi S.H.
        • Kim J.W.
        • Chang J.S.
        • Cho J.H.
        • Kim S.H.
        • Chang J.H.
        • Suh C.-O.
        Impact of including peritumoral edema in radiotherapy target volume on patterns of failure in glioblastoma following temozolomide-based chemoradiotherapy.
        Sci Rep. 2017; 7https://doi.org/10.1038/srep42148
        • Kim E.Y.
        • Yechieli R.
        • Kim J.K.
        • Mikkelsen T.
        • Kalkanis S.N.
        • Rock J.
        • Rosenblum M.
        • Ryu S.
        Patterns of failure after radiosurgery to two different target volumes of enhancing lesions with and without FLAIR abnormalities in recurrent glioblastoma multiforme.
        J Neurooncol. 2014; 116: 291-297https://doi.org/10.1007/s11060-013-1290-4
        • Ma Q.
        • Schlegel F.
        • Bachmann S.B.
        • Schneider H.
        • Decker Y.
        • Rudin M.
        • Weller M.
        • Proulx S.T.
        • Detmar M.
        Lymphatic outflow of cerebrospinal fluid is reduced in glioma.
        Sci Rep. 2019; 9https://doi.org/10.1038/s41598-019-51373-9
        • Montano N.
        • D'Alessandris Q.G.
        • Bianchi F.
        • Lauretti L.
        • Doglietto F.
        • Fernandez E.
        • Maira G.
        • Pallini R.
        Communicating hydrocephalus following surgery and adjuvant radiochemotherapy for glioblastoma.
        J Neurosurg. 2011; 115: 1126-1130https://doi.org/10.3171/2011.8.JNS11738
        • Alonso M.I.
        • Lamus F.
        • Carnicero E.
        • Moro J.A.
        • de la Mano A.
        • Fernandez J.M.F.
        • et al.
        Embryonic cerebrospinal fluid increases neurogenic activity in the brain ventricular-subventricular zone of adult mice.
        Frontiers in neuroanatomy. 2017; 11: 124https://doi.org/10.3389/fnana.2017.00124
        • Carnicero E.
        • Alonso M.I.
        • Carretero R.
        • Lamus F.
        • Moro J.A.
        • de la Mano A.
        • Fernández J.M.F.
        • Gato A.
        Embryonic cerebrospinal fluid activates neurogenesis of neural precursors within the subventricular zone of the adult mouse brain.
        Cells Tissues Organs. 2013; 198: 398-404https://doi.org/10.1159/000356983
        • Silva-Vargas V.
        • Maldonado-Soto A.
        • Mizrak D.
        • Codega P.
        • Doetsch F.
        Age-dependent niche signals from the choroid plexus regulate adult neural stem cells.
        Cell Stem Cell. 2016; 19: 643-652https://doi.org/10.1016/j.stem.2016.06.013
        • Peles E.
        • Lidar Z.
        • Simon A.J.
        • Grossman R.
        • Nass D.
        • Ram Z.
        Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors.
        Neurosurgery. 2004; 55: 562-567https://doi.org/10.1227/01.neu.0000134383.27713.9a
        • Fukushima Y.
        • Tamura M.
        • Nakagawa H.
        • Itoh K.
        Induction of glioma cell migration by vitronectin in human serum and cerebrospinal fluid.
        J Neurosurg. 2007; 107: 578-585https://doi.org/10.3171/JNS-07/09/0578
        • Khwaja F.W.
        • Duke-Cohan J.S.
        • Brat D.J.
        • Van Meir E.G.
        Attractin is elevated in the cerebrospinal fluid of patients with malignant astrocytoma and mediates glioma cell migration.
        Clin Cancer Res. 2006; 12: 6331-6336https://doi.org/10.1158/1078-0432.CCR-06-1296
        • Qin E.Y.
        • Cooper D.D.
        • Abbott K.L.
        • Lennon J.
        • Nagaraja S.
        • Mackay A.
        • Jones C.
        • Vogel H.
        • Jackson P.K.
        • Monje M.
        Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma.
        Cell. 2017; 170: 845-859.e19https://doi.org/10.1016/j.cell.2017.07.016
        • Mistry A.M.
        • Kelly P.D.
        • Gallant J.N.
        • Mummareddy N.
        • Mobley B.C.
        • Thompson R.C.
        • et al.
        Comparative analysis of subventricular zone glioblastoma contact and ventricular entry during resection in predicting dissemination, hydrocephalus, and survival.
        Neurosurgery. 2019; 85: E924-E932https://doi.org/10.1093/neuros/nyz144
        • Mistry A.M.
        • Hale A.T.
        • Chambless L.B.
        • Weaver K.D.
        • Thompson R.C.
        • Ihrie R.A.
        Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis.
        J Neurooncol. 2017; 131: 125-133https://doi.org/10.1007/s11060-016-2278-7
        • Baird G.S.
        • Nelson S.K.
        • Keeney T.R.
        • Stewart A.
        • Williams S.
        • Kraemer S.
        • Peskind E.R.
        • Montine T.J.
        Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array.
        Am J Pathol. 2012; 180: 446-456https://doi.org/10.1016/j.ajpath.2011.10.024
        • Giusti I.
        • Francesco M.
        • Dolo V.
        Extracellular vesicles in glioblastoma: role in biological processes and in therapeutic applications.
        Current Cancer Drug Targets. 2017; 17: 221-235https://doi.org/10.2174/1568009616666160813182959
        • Figueroa J.M.
        • Skog J.
        • Akers J.
        • Li H.
        • Komotar R.
        • Jensen R.
        • et al.
        Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients.
        Neuro-oncology. 2017; 19: 1494-1502https://doi.org/10.1093/neuonc/nox085