Highlights
- •So far only two devices have reached the final stage – the Argus II and Alpha IMS.
- •Some hardware limitations of bionic eye implants has been resolved.
- •Software is also an important component of a successful bionic eye system.
Abstract
Purpose
Methods
Results
Conclusion
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Clinical NeuroscienceReferences
- Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis.Lancet Glob Heal. 2017 Sep; 5: e888-e897https://doi.org/10.1016/S2214-109X(17)30293-0
- The Argus-II retinal prosthesis implantation; from the global to local successful experience.Front Neurosci. 2018; 12: 584https://doi.org/10.3389/fnins.2018.00584
Mirochnik RM, Pezaris JS. Contemporary approaches to visual prostheses [published correction appears in Mil Med Res. 2019 Aug 7;6(1):25]. Mil Med Res. 2019;6(1):19. Published 2019 Jun 5. doi:10.1186/s40779-019-0206-9
- Optogenetic stimulation for restoring vision to patients suffering from retinal degenerative diseases: current strategies and future directions.IEEE Trans Biomed Circuits Syst. Dec. 2019; 13: 1792-1807
- The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss.Br J Ophthalmol. 2013; 97: 632-636https://doi.org/10.1016/j.visres.2014.10.002
- A non-coherent DPSK data receiver with interference cancellation for dual-band transcutaneous telemetries.IEEE J Solid State Circuits. 2008; 43: 2003-2012
- Adverse events of the Argus II retinal prosthesis: incidence, causes, and best practices for managing and preventing conjunctival erosion.Retina. 2018;
- Long term tolerability of the first wireless implant for electrical epiretinal stimulation.Invest Ophthalmol Vis Sci. 2009; 50: 4226
Ferrandez JM, Liano E, Bonomini P, Martinez JJ, Toledo J, Fernandez E. A customizable multi-channel stimulator for cortical neuroprosthesis. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, Lyon; 2007, p. 4707–10.
Fernández E, Greger B, House PA, Aranda I, Botella C, Albisua J, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 2014;7:24. Published 2014 Jul 21. doi:10.3389/fneng.2014.00024.
- Subretinal visual implant alpha IMS‐‐clinical trial interim report.Vision Res. 2015; 111 (Epub 2015 Mar 23): 149-160https://doi.org/10.1016/j.visres.2015.03.001
- Position, size and luminosity of phosphenes generated by direct optic nerve stimulation.Vision Res. 2003; 43: 1091-1102https://doi.org/10.1016/s0042-6989(03)00013-0
- Visual sensation by electrical stimulation using a new direct optic nerve electrode device.Brain Stimul. 2015; 8: 678-681
- Advances in implantable bionic devices for blindness: a review.ANZ J Surg. 2016; 86: 654-659https://doi.org/10.1111/ans.13616
- Prostheses for the blind.Trends Biotechnol. 2013; 31: 562-571
- A System verification platform for high-density epiretinal prostheses.IEEE Trans Biomed Circuits Syst. June 2013; 7: 326-337
- Design of a high-resolution optoelectronic retinal prosthesis.J Neural Eng. 2005; 2: S105-S120
Gross M, Buss R, Kohler K, Schaub J, Jager D. Optical signal and energy transmission for a retina implant. In: Engineering in medicine and biology, 1999. 21st annual conference and the 1999 annual fall meeting of the Biomedical Engineering Society. BMES/EMBS conference, 1999. Proceedings of the first joint 1999, 476, vol. 1.
Ortmanns M, Unger N, Rocke A, Gehrke M, Tietdke HJ. A 0.1mm/sup 2/, digitally programmable nerve stimulation pad cell with high-voltage capability for a retinal implant. In: 2006 IEEE international solid state circuits conference - digest of technical papers, San Francisco, CA; 2006, p. 89–98.
- Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application).IEEE Trans Biomed Eng. Nov. 1990; 37: 1118-1120
Zhou DD, Dorn JD, Greenberg RJ. The Argus II retinal prosthesis system: an overview. In: IEEE ICME conference, San Jose, CA; 2013.
- In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.IEEE Trans. Biomed. Eng. Dec. 2002; 49: 1574-1579
Barton JJS, Benatar M. An introduction to perimetry and the normal visual field. In: Field of vision: a manual and atlas of perimetry, Humana Press; 2003.
- Toward a wide-field retinal prosthesis.J Neural Eng. 2009; 6: 035002https://doi.org/10.1088/1741-2560/6/3/035002
Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 2013;280(1757):20130077. Published 2013 Feb 20. doi:10.1098/rspb.2013.0077.
Finn AP, Vajzovic L. Ophtalmic surgery laser and retina sheets glide-assisted intraocular placement of the Argus II retinal prosthesis 2018;49(2):132–3 doi: 10.3928/23258160-20180129-08.
- Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.PLoS Med. 2009; 6: e1000097https://doi.org/10.1371/journal.pmed.1000097
- Electronics brings light to the blind.Radio Electron. 1958; 29: 53-55
Panetsos F, Sanchez-Jimenez A, Cerio ED, Diaz-Guemes I, Sanchez FM. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci 2011;5:84. Published 2011 Jul 5. doi:10.3389/fnins.2011.00084.
- Toward the development of a cortically based visual neuroprosthesis [published correction appears.J Neural Eng. 2009 Aug; 6: 049802
- Interim results from the international trial of Second Sight's visual prosthesis.Ophthalmology. 2012; 119: 779-788https://doi.org/10.1016/j.ophtha.2011.09.028
- Long-term results from an epiretinal prosthesis to restore sight to the blind.Ophthalmology. 2015; 122: 1547-1554https://doi.org/10.1016/j.ophtha.2015.04.032
- Preliminary report on a retinal stimulator.British J Physiol Opt. 1956; 13: 102-105
- Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa.Ophthalmology. 2018; 125: 432-443https://doi.org/10.1016/j.ophtha.2017.09.019
- Spike-triggered average electrical stimuli as input filters for bionic vision: a perspective.J Neural Eng. 2018; https://doi.org/10.1088/1741-2552/aae493
Yue L, Wuyyuru V, Gonzalez-Calle A, Dorn J, Humayun MS. Retina-electrode interfacial properties and vision restoration by two generations of retinal prostheses in one patient – one in each eye. J Neural Eng 2020 Mar 4. doi: 10.1088/1741-2552/ab7c8f.
Tsai YC, Wu JJ, Lin PK, Lin BJ, Wang PS, Liu CH, et al. Spatiotemporal integration of visual stimuli and its relevance to the use of a divisional power supply scheme for retinal prosthesis. PLoS One 2020;15(2):e0228861. Published 2020 Feb 21. doi:10.1371/journal.pone.0228861.
- Argus II study group five-year safety and performance results from the Argus II retinal prosthesis system clinical trial.Ophthalmology. 2016; 123: 2248-2254https://doi.org/10.1016/j.ophtha.2016.06.049
- Advances in retinal prosthesis systems.Ther Adv Ophthalmol. 2019; 11 (2515841418817501. Published Jan 2019 17)https://doi.org/10.1177/2515841418817501
- Multicenter study on acute electrical stimulation of the human retina with an epiretinal implant: clinical results in 20 patients.Invest Ophthalmol Vis Sci. 2005; 46: 1143
- Acute electrical stimulation of the human retina with an epiretinal electrode array.Acta Ophthalmol. 2012; 90: e1-e8https://doi.org/10.1111/j.1755-3768.2011.02288.x
Muqit M, LeMer Y, De Rothschild A. Results at 6 months, http://www.pixium-vision.com/en/clinical-trial/retinitis-pigmentosa-iris-ii/results-at-6-months (2017, accessed 27 August 2018).
- Pixium vision: first clinical results and innovative developments.in: Gabel V.P. Artificial vision. Springer, Cham2016: 99-113
- Restoration of vision using wireless cortical implants: the Monash Vision Group project.Conf Proc IEEE Eng Med Biol Soc. 2015; : 1041-1044
- The Toronto experience with the Argus II retinal prosthesis: new technology, new hope for patients.Can J Ophtalmol. 2018; 53: 9-13
- First-in-human trial of a novel suprachoroidal retinal prosthesis.PLoS One. 2014; 9 (Published 2014 Dec 18)https://doi.org/10.1371/journal.pone.0115239
- Visual perception in a blind subject with a chronic microelectronic retinal prosthesis.Vision Res. 2003; 43: 2573-2581
Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (London, England), 31(10):1383–98. https://doi.org/10.1038/eye.2017.65.
- Identification of characters and localization of images using direct multiple-electrode stimulation with a suprachoroidal retinal prosthesis.Invest Ophthalmol Vis Sci. 2017; 58: 3962-3974
- Pattern recognition with the optic nerve visual prosthesis.Artif Organs. 2003; 27: 996e1004https://doi.org/10.1046/j.1525-1594.2003.07305.x
- New technologies for developing second generation retinal prostheses.Lab Anim. 2018; 47 (Epub 2018 Feb 26): 71-75https://doi.org/10.1038/s41684-018-0003-1
- Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective.Brain Res. 2016; 1630: 208-224https://doi.org/10.1016/j.brainres.2015.08.038
- Bionic-compound-eye structure for realizing a compact integral imaging 3D display in a cell phone with enhanced performance.Opt Lett. 2020; 45: 1491-1494
Zhou DD, Dorn JD, Greenberg RJ. The Argus® II retinal prosthesis system: an overview. In: 2013 IEEE international conference on multimedia and expo workshops (ICMEW), San Jose, CA: IEEE; 2013. p. 1–6.
- Worldwide Argus II implantation: recommendations to optimize patient outcomes.BMC Ophthalmol. 2016; 16: 52https://doi.org/10.1186/s12886-016-0225-1
- Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics.Neurotherapeutics. 2019; 16: 134-143https://doi.org/10.1007/s13311-018-0660-1
- Functionality and performance of the subretinal implant chip alpha AMS.Sens an. 2018; 30: 179-192https://doi.org/10.18494/sam.2018.1726
Rizzo S, Barale PO, Ayello-Scheer S, Devenyi RG, Delyfer MN, Korobelnik JF, et al. Adverse events of the Argus II retinal prosthesis: incidence, causes, and best practices for managing and preventing conjunctival erosion. Retina 2018 Nov 20. doi: 10.1097/IAE.0000000000002394.
Suaning GJ, Lovell NH, Lehmann T. Neuromodulation of the retina from the suprachoroidal space: the Phoenix 99 implant. In: Paper presented at: biomedical circuits and systems conference (BioCAS); October 22–24, 2014; Lausanne, Switzerland doi:10.1109/BioCAS.2014.6981711.
- Artificial shape perception retina network based on tunable memristive neurons.Sci Rep. 2018; 8: 13727https://doi.org/10.1038/s41598-018-31958-6
- Review of retinal prosthesis approaches.Int J Modern Phys Conf Ser. 2012; 9: 209-231
- Gaze compensation as a technique for improving hand-eye coordination in prosthetic vision.Transl Vis Sci Technol. 2018; 7 (Published 2018 Jan 5): 2https://doi.org/10.1167/tvst.7.1.2
- Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa.Ophthalmology. 2018; 125: 432-443https://doi.org/10.1016/j.ophtha.2017.09.019
- Nishida K Light localization with low-contrast targets in a patient implanted with a suprachoroidal–transretinal stimulation retinal prosthesis.Graefes Arch Clin Exp Ophthalmol. 2018; 256 (Epub 2018 Apr 20): 1723-1729https://doi.org/10.1007/s00417-018-3982-0