Review article| Volume 78, P8-19, August 2020

Download started.


Bionic eye review – An update

  • Kamil Nowik
    Corresponding author.
    Department of Management and Financial Science, School of Economics, Warszawa, Poland

    Department of Ophthalmology, SPKSO (Samodzielny Publiczny Kliniczny Szpital Okulistyczny) Ophthalmic Hospital, Medical University of Warsaw, 03-709 Warsaw, Poland
    Search for articles by this author
  • Ewa Langwińska-Wośko
    Department of Ophthalmology, SPKSO (Samodzielny Publiczny Kliniczny Szpital Okulistyczny) Ophthalmic Hospital, Medical University of Warsaw, 03-709 Warsaw, Poland
    Search for articles by this author
  • Piotr Skopiński
    Department of Ophthalmology, SPKSO (Samodzielny Publiczny Kliniczny Szpital Okulistyczny) Ophthalmic Hospital, Medical University of Warsaw, 03-709 Warsaw, Poland

    Department of Histology and Embryology, Medical University of Warsaw, Poland
    Search for articles by this author
  • Katarzyna E. Nowik
    Department of Ophthalmology, SPKSO (Samodzielny Publiczny Kliniczny Szpital Okulistyczny) Ophthalmic Hospital, Medical University of Warsaw, 03-709 Warsaw, Poland
    Search for articles by this author
  • Jacek P. Szaflik
    Department of Ophthalmology, SPKSO (Samodzielny Publiczny Kliniczny Szpital Okulistyczny) Ophthalmic Hospital, Medical University of Warsaw, 03-709 Warsaw, Poland
    Search for articles by this author


      • So far only two devices have reached the final stage – the Argus II and Alpha IMS.
      • Some hardware limitations of bionic eye implants has been resolved.
      • Software is also an important component of a successful bionic eye system.



      To date, reviews of bionic eye have concentrated on implants which were used in human trials in the developed countries. This is the main restriction of this systematic review examines, however this review discusses worldwide advances in retinal prosthetic research, assesses engineering features and clinical progress of recent implant trials, and identifies potential future research areas in the field of bionic implants.


      A literature review searching PubMed, Google Scholar, and IEEExplore was performed using the PRISMA Guidelines for Systematic Review. We included peer-reviewed papers in the review which demonstrated progress in human or animal trials and papers with described innovative bionic eye engineering design. For each trial, a characteristic of the device, engineering solution, and latest clinical outcomes were presented.


      Eleven prosthetic projects fulfilled met our inclusion criteria and were ordered by stimulation location. Four have recently finished human trials, three are having conducted multi- or singlecenter human trials, and three are in preclinical animal testing stage. FDA has approved Argus II (FDA 2013, CE 2011); the Alpha-IMS (CE 2013) has been approved and obtained BCVA with Landolt-C test has taken into a multicenter clinical research. New approaches will be presented using alternating magnetic fields, low-intensity focused ultrasounds, optogenetics, implementing ionic gradients across neural cell membranes or influencing neurotransmitter levels will be presented in the review.


      Several bionic eye have successfully achieved visual perception in animals and/or humans. However, many things need to be improved and engineering difficulties are to be resolved before bionic eye will be capable of fully and safely bring back vision functions. New approaches could improve medical outcome of future bionic eye.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bourne R.R.A.
        • Flaxman S.R.
        • Tasanee Braithwaite T.
        • Maria V.
        • Cicinelli M.M.
        • Das Aditi
        • et al.
        Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis.
        Lancet Glob Heal. 2017 Sep; 5: e888-e897
        • Farvardin M.
        • Afarid M.
        • Attarzadeh A.
        • Johari M.K.
        • Mehryar M.
        • Nowroozzadeh M.H.
        • et al.
        The Argus-II retinal prosthesis implantation; from the global to local successful experience.
        Front Neurosci. 2018; 12: 584
      1. Mirochnik RM, Pezaris JS. Contemporary approaches to visual prostheses [published correction appears in Mil Med Res. 2019 Aug 7;6(1):25]. Mil Med Res. 2019;6(1):19. Published 2019 Jun 5. doi:10.1186/s40779-019-0206-9

        • Montazeri L.
        • El Zarif N.
        • Trenholm S.
        • Sawan M.
        Optogenetic stimulation for restoring vision to patients suffering from retinal degenerative diseases: current strategies and future directions.
        IEEE Trans Biomed Circuits Syst. Dec. 2019; 13: 1792-1807
        • da Cruz L.
        • Coley B.F.
        • Dorn J.
        The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss.
        Br J Ophthalmol. 2013; 97: 632-636
        • Zhou M.
        • Yuce M.R.
        • Liu Wentai
        A non-coherent DPSK data receiver with interference cancellation for dual-band transcutaneous telemetries.
        IEEE J Solid State Circuits. 2008; 43: 2003-2012
        • Rizzo S.
        • Barale P.O.
        • Ayello-Scheer S.
        • Devenyi R.G.
        • Delyfer M.N.
        • Korobelnik J.F.
        • et al.
        Adverse events of the Argus II retinal prosthesis: incidence, causes, and best practices for managing and preventing conjunctival erosion.
        Retina. 2018;
        • Keserü M.
        • Post N.
        • Hornig R.
        • Zeitz O.
        • Richard G.
        Long term tolerability of the first wireless implant for electrical epiretinal stimulation.
        Invest Ophthalmol Vis Sci. 2009; 50: 4226
      2. Ferrandez JM, Liano E, Bonomini P, Martinez JJ, Toledo J, Fernandez E. A customizable multi-channel stimulator for cortical neuroprosthesis. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, Lyon; 2007, p. 4707–10.

      3. Fernández E, Greger B, House PA, Aranda I, Botella C, Albisua J, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 2014;7:24. Published 2014 Jul 21. doi:10.3389/fneng.2014.00024.

        • Stingl K.
        • Bartz-Schmidt K.U.
        • Besch D.
        • Cheeb C.K.
        • Cottriall C.L.
        • Gekeler F.
        • et al.
        Subretinal visual implant alpha IMS‐‐clinical trial interim report.
        Vision Res. 2015; 111 (Epub 2015 Mar 23): 149-160
        • Delbeke J.
        • Oozeer M.
        • Veraart C.
        Position, size and luminosity of phosphenes generated by direct optic nerve stimulation.
        Vision Res. 2003; 43: 1091-1102
        • Nishida K.
        • Sakaguchi H.
        • Kamei M.
        • Cecilia-Gonzalez C.
        • Terasawa Y.
        • Velez-Montoya R.
        • et al.
        Visual sensation by electrical stimulation using a new direct optic nerve electrode device.
        Brain Stimul. 2015; 8: 678-681
        • Lewis P.M.
        • Ayton L.N.
        • Guymer R.H.
        • Lowery A.J.
        • Blamey P.J.
        • Allen P.J.
        • et al.
        Advances in implantable bionic devices for blindness: a review.
        ANZ J Surg. 2016; 86: 654-659
        • Shepherd R.K.
        • Shivdasani M.N.
        • Nayagam D.A.
        • Williams C.E.
        • Blamey P.J.
        Prostheses for the blind.
        Trends Biotechnol. 2013; 31: 562-571
        • Chen K.
        • Lo Y.
        • Yang Z.
        • Weiland J.D.
        • Humayun M.S.
        • Liu W.
        A System verification platform for high-density epiretinal prostheses.
        IEEE Trans Biomed Circuits Syst. June 2013; 7: 326-337
        • Palanker D.
        • Vankov A.
        • Huie P.
        • Baccus S.
        Design of a high-resolution optoelectronic retinal prosthesis.
        J Neural Eng. 2005; 2: S105-S120
      4. Gross M, Buss R, Kohler K, Schaub J, Jager D. Optical signal and energy transmission for a retina implant. In: Engineering in medicine and biology, 1999. 21st annual conference and the 1999 annual fall meeting of the Biomedical Engineering Society. BMES/EMBS conference, 1999. Proceedings of the first joint 1999, 476, vol. 1.

      5. Ortmanns M, Unger N, Rocke A, Gehrke M, Tietdke HJ. A 0.1mm/sup 2/, digitally programmable nerve stimulation pad cell with high-voltage capability for a retinal implant. In: 2006 IEEE international solid state circuits conference - digest of technical papers, San Francisco, CA; 2006, p. 89–98.

        • Rose T.L.
        • Robblee L.S.
        Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application).
        IEEE Trans Biomed Eng. Nov. 1990; 37: 1118-1120
      6. Zhou DD, Dorn JD, Greenberg RJ. The Argus II retinal prosthesis system: an overview. In: IEEE ICME conference, San Jose, CA; 2013.

        • Weiland J.D.
        • Anderson D.J.
        • Humayun M.S.
        In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
        IEEE Trans. Biomed. Eng. Dec. 2002; 49: 1574-1579
      7. Barton JJS, Benatar M. An introduction to perimetry and the normal visual field. In: Field of vision: a manual and atlas of perimetry, Humana Press; 2003.

        • Ameri H.
        • Ratanapakorn T.
        • Ufer S.
        • Eckhardt H.
        • Humayun M.S.
        • Weiland J.D.
        Toward a wide-field retinal prosthesis.
        J Neural Eng. 2009; 6: 035002
      8. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 2013;280(1757):20130077. Published 2013 Feb 20. doi:10.1098/rspb.2013.0077.

      9. Finn AP, Vajzovic L. Ophtalmic surgery laser and retina sheets glide-assisted intraocular placement of the Argus II retinal prosthesis 2018;49(2):132–3 doi: 10.3928/23258160-20180129-08.

        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • PRISMA Group
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6: e1000097
        • Button J.C.
        Electronics brings light to the blind.
        Radio Electron. 1958; 29: 53-55
      10. Panetsos F, Sanchez-Jimenez A, Cerio ED, Diaz-Guemes I, Sanchez FM. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci 2011;5:84. Published 2011 Jul 5. doi:10.3389/fnins.2011.00084.

        • Normann R.A.
        • Greger B.
        • House P.
        • Romero S.F.
        • Pelayo F.
        • Fernandez E.
        Toward the development of a cortically based visual neuroprosthesis [published correction appears.
        J Neural Eng. 2009 Aug; 6: 049802
        • Greger Bradley A.
        • Humayun M.S.
        • Dorn J.D.
        • da Cruz L.
        • Dagnelie G.
        • Sahel J.A.
        • et al.
        Interim results from the international trial of Second Sight's visual prosthesis.
        Ophthalmology. 2012; 119: 779-788
        • Ho A.C.
        • Humayun M.S.
        • Dorn J.D.
        • da Cruz L.
        • Dagnelie G.
        • Handa J.
        • et al.
        Long-term results from an epiretinal prosthesis to restore sight to the blind.
        Ophthalmology. 2015; 122: 1547-1554
        • Tassicker G.
        Preliminary report on a retinal stimulator.
        British J Physiol Opt. 1956; 13: 102-105
        • Edwards T.L.
        • Cottriall C.L.
        • Xue K.
        Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa.
        Ophthalmology. 2018; 125: 432-443
        • Rathbun D.L.
        • Ghorbani N.
        • Shabani H.
        • Zrenner E.
        • Hosseinzadeh Z.
        Spike-triggered average electrical stimuli as input filters for bionic vision: a perspective.
        J Neural Eng. 2018;
      11. Yue L, Wuyyuru V, Gonzalez-Calle A, Dorn J, Humayun MS. Retina-electrode interfacial properties and vision restoration by two generations of retinal prostheses in one patient – one in each eye. J Neural Eng 2020 Mar 4. doi: 10.1088/1741-2552/ab7c8f.

      12. Tsai YC, Wu JJ, Lin PK, Lin BJ, Wang PS, Liu CH, et al. Spatiotemporal integration of visual stimuli and its relevance to the use of a divisional power supply scheme for retinal prosthesis. PLoS One 2020;15(2):e0228861. Published 2020 Feb 21. doi:10.1371/journal.pone.0228861.

        • da Cruz L.
        • Dorn J.D.
        • Humayun M.S.
        • Dagnelie G.
        • Handa J.
        • Barale P.O.
        • et al.
        Argus II study group five-year safety and performance results from the Argus II retinal prosthesis system clinical trial.
        Ophthalmology. 2016; 123: 2248-2254
        • Bloch E.
        • Luo Y.
        • da Cruz L.
        Advances in retinal prosthesis systems.
        Ther Adv Ophthalmol. 2019; 11 (2515841418817501. Published Jan 2019 17)
        • Richard G.
        • Feucht M.
        • Bornfeld N.
        • Laube T.
        • Rössler G.
        • Velikay-Parel M.
        • et al.
        Multicenter study on acute electrical stimulation of the human retina with an epiretinal implant: clinical results in 20 patients.
        Invest Ophthalmol Vis Sci. 2005; 46: 1143
        • Keserü M.
        • Feucht M.
        • Bornfeld N.
        • Laube T.
        • Walter P.
        • et al.
        Acute electrical stimulation of the human retina with an epiretinal electrode array.
        Acta Ophthalmol. 2012; 90: e1-e8
      13. Muqit M, LeMer Y, De Rothschild A. Results at 6 months, (2017, accessed 27 August 2018).

        • Hornig R.
        • Dapper M.
        • Le Joliff E.
        Pixium vision: first clinical results and innovative developments.
        in: Gabel V.P. Artificial vision. Springer, Cham2016: 99-113
        • Lowery A.J.
        • Rosenfeld J.V.
        • Lewis P.M.
        • Browne D.
        • Emma Brunton E.
        • Yan E.
        • et al.
        Restoration of vision using wireless cortical implants: the Monash Vision Group project.
        Conf Proc IEEE Eng Med Biol Soc. 2015; : 1041-1044
        • Devenyi R.G.
        • Manusow J.
        • Patino B.E.
        • Mongy M.
        • Markowitz M.
        • Markowitz S.N.
        The Toronto experience with the Argus II retinal prosthesis: new technology, new hope for patients.
        Can J Ophtalmol. 2018; 53: 9-13
        • Ayton L.N.
        • Blamey P.J.
        • Guymer R.H.
        • Luu C.D.
        • Nayagam D.A.
        • Sinclair N.C.
        • et al.
        First-in-human trial of a novel suprachoroidal retinal prosthesis.
        PLoS One. 2014; 9 (Published 2014 Dec 18)
        • Humayun M.S.
        • Weiland J.D.
        • Fujii G.Y.
        • Greenberg R.
        • Williamson R.
        • Little J.
        • et al.
        Visual perception in a blind subject with a chronic microelectronic retinal prosthesis.
        Vision Res. 2003; 43: 2573-2581
      14. Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (London, England), 31(10):1383–98.

        • Shivdasani M.N.
        • Sinclair N.C.
        • Gillespie L.N.
        • Matthew A.P.
        • Titchener S.A.
        • Fallon J.B.
        • et al.
        Identification of characters and localization of images using direct multiple-electrode stimulation with a suprachoroidal retinal prosthesis.
        Invest Ophthalmol Vis Sci. 2017; 58: 3962-3974
        • Veraart C.
        • Wanet-Defalque M.C.
        • Gerard B.
        • Vanlierde A.
        • Delbeke J.
        Pattern recognition with the optic nerve visual prosthesis.
        Artif Organs. 2003; 27: 996e1004
        • Benfenati F.
        • Lanzani G.
        New technologies for developing second generation retinal prostheses.
        Lab Anim. 2018; 47 (Epub 2018 Feb 26): 71-75
        • Lewis P.M.
        • Rosenfeld J.V.
        Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective.
        Brain Res. 2016; 1630: 208-224
        • Zi-Feng Z.
        • Juan L.
        • Zhi-Qi Z.
        • Liang-Fa X.
        Bionic-compound-eye structure for realizing a compact integral imaging 3D display in a cell phone with enhanced performance.
        Opt Lett. 2020; 45: 1491-1494
      15. Zhou DD, Dorn JD, Greenberg RJ. The Argus® II retinal prosthesis system: an overview. In: 2013 IEEE international conference on multimedia and expo workshops (ICMEW), San Jose, CA: IEEE; 2013. p. 1–6.

        • Ghodasra D.H.
        • Chen A.
        • Arevalo J.F.
        • Birch D.G.
        • Branham K.
        • Coley B.
        • et al.
        Worldwide Argus II implantation: recommendations to optimize patient outcomes.
        BMC Ophthalmol. 2016; 16: 52
        • Niketeghad S.
        • Pouratian N.
        Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics.
        Neurotherapeutics. 2019; 16: 134-143
        • Daschner R.
        • Rothermel A.
        • Rudorf R.
        • Rudorf S.
        • Strett A.
        Functionality and performance of the subretinal implant chip alpha AMS.
        Sens an. 2018; 30: 179-192
      16. Rizzo S, Barale PO, Ayello-Scheer S, Devenyi RG, Delyfer MN, Korobelnik JF, et al. Adverse events of the Argus II retinal prosthesis: incidence, causes, and best practices for managing and preventing conjunctival erosion. Retina 2018 Nov 20. doi: 10.1097/IAE.0000000000002394.

      17. Suaning GJ, Lovell NH, Lehmann T. Neuromodulation of the retina from the suprachoroidal space: the Phoenix 99 implant. In: Paper presented at: biomedical circuits and systems conference (BioCAS); October 22–24, 2014; Lausanne, Switzerland doi:10.1109/BioCAS.2014.6981711.

        • Bao L.
        • Kang J.
        • Fang Y.
        • Yu Z.
        • Wang Z.
        • Yang Y.
        • et al.
        Artificial shape perception retina network based on tunable memristive neurons.
        Sci Rep. 2018; 8: 13727
        • Kien Tran A.
        • Maul T.
        • Bargiela A.
        Review of retinal prosthesis approaches.
        Int J Modern Phys Conf Ser. 2012; 9: 209-231
        • Titchener S.A.
        • Shivdasani M.N.
        • Fallon J.B.
        • Petoe M.A.
        Gaze compensation as a technique for improving hand-eye coordination in prosthetic vision.
        Transl Vis Sci Technol. 2018; 7 (Published 2018 Jan 5): 2
        • Edwards T.L.
        • Cottriall C.L.
        • Xue K.
        • Simunovic M.P.
        • Ramsden J.D.
        • Zrenner E.
        • et al.
        Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa.
        Ophthalmology. 2018; 125: 432-443
        • Endo T.
        • Fujikado T.
        • Hirota M.
        • Kanda H.
        • Morimoto T.
        Nishida K Light localization with low-contrast targets in a patient implanted with a suprachoroidal–transretinal stimulation retinal prosthesis.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256 (Epub 2018 Apr 20): 1723-1729