The effect of bioactive glasses on spinal fusion: A cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data

Published:April 21, 2020DOI:


      • First systematic review and meta-analysis on bioactive glasses in spinal fusion.
      • Across 396 patients, fusion was seen in 84% treated with bioactive glass.
      • Fusion rate was similar for autograft-alone and bioactive glass-autograft mixtures.
      • Similar findings were observed in the animal literature, suggesting translatability.
      • Bioactive glasses may offer clinical value as an autograft extender in spinal fusion.


      Pseudarthrosis following spinal fusion is correlated with poorer patient outcomes and consequently is an area of continued interest within spinal research. Recently, bioactive glasses have been proposed as a means of augmenting fusion rates. Here, we present the first systematic review and meta-analysis of the existing preclinical and clinical literature on the effect of bioactive glasses on spinal fusion. Using the MEDLINE, Embase, and Web of Science databases, we queried all publications in the English-language literature examining the effect of bioactive glasses on spinal fusion. The primary endpoint was fusion rate at last follow-up and the secondary endpoint for clinical studies was the rate of deep wound infection. Random-effects meta-analyses were performed independently for the preclinical and clinical data. Twelve preclinical studies (267 animals) and 12 clinical studies (396 patients) evaluating a total of twelve unique bioactive glass formulations were included. Across clinical studies, fusion was seen in 84% treated with bioactive glass. On sub-analysis, fusion rates were similar for standalone autograft (91.6%) and bioactive glass-local autograft mixtures (89.6%). Standalone bioactive glass substrates produced inferior fusion rates relative to autograft alone (33.6% vs. 98.8%; OR 0.01, p < 0.02). Rates of deep wound infection did not differ between the bioactive glass and autograft groups (3.1%). The preclinical data similarly showed comparable rates of fusion between autograft and bioactive glass-treated animals. The available data suggest that bioactive glass-autograft mixtures confer similar rates of spinal fusion relative to standalone autograft without altering the risk of deep wound infection.

      Graphical abstract



      OR (odds ratio), QUOROM (Quality of Reporting of Meta-analyses), 95% CI (95% confidence interval)
      To read this article in full you will need to make a payment


      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine (Phila Pa 1976). 2012;37:67-76.

      2. Weiss AJ, Elixhauser A, Andrews RM. Characteristics of Operating Room Procedures in U.S. Hospitals, 2011: Statistical Brief #170. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD): Agency for Healthcare Research and Quality (US); 2014.

      3. Noshchenko A, Lindley EM, Burger EL, Cain CM, Patel VV. What Is the Clinical Relevance of Radiographic Nonunion After Single-Level Lumbar Interbody Arthrodesis in Degenerative Disc Disease?: A Meta-Analysis of the YODA Project Database. Spine (Phila Pa 1976). 2016;41:9-17.

        • Adogwa O.
        • Parker S.L.
        • Shau D.
        • Mendelhall S.K.
        • Cheng J.
        • Aaronson O.
        • et al.
        Long-term outcomes of revision fusion for lumbar pseudarthrosis: clinical article.
        J Neurosurg Spine. 2011; 15: 393-398
        • Tsutsumimoto T.
        • Shimogata M.
        • Yoshimura Y.
        • Misawa H.
        Union versus nonunion after posterolateral lumbar fusion: a comparison of long-term surgical outcomes in patients with degenerative lumbar spondylolisthesis.
        Eur Spine J. 2008; 17: 1107-1112
      4. Cottrill E, Pennington Z, Ahmed AK, Lubelski D, Goodwin ML, Perdomo-Pantoja A, et al. The effect of electrical stimulation therapies on spinal fusion: a cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data. JNS: Spine. 2019;In press.

        • Cottrill E.
        • Ahmed A.K.
        • Lessing N.
        • Pennington Z.
        • Ishida W.
        • Perdomo-Pantoja A.
        • et al.
        Investigational growth factors utilized in animal models of spinal fusion: systematic review.
        World J Orthop. 2019; 10: 176-191
      5. Perdomo-Pantoja A, Shamoun F, Holmes C, Ishida W, Ramhmdani S, Cottrill E, et al. A Retrospective Cohort Analysis of the Effects of Renin-Angiotensin System Inhibitors on Spinal Fusion in ACDF Patients. The Spine Journal.

      6. Blumenthal SL, Baker J, Dossett A, Selby DK. The role of anterior lumbar fusion for internal disc disruption. Spine (Phila Pa 1976). 1988;13:566-9.

        • Calandruccio R.A.
        • Benton B.F.
        Anterior lumbar fusion.
        Clin Orthop Relat Res. 1964; 35: 63-68
        • Flynn J.C.
        • Hoque M.A.
        Anterior fusion of the lumbar spine. End-result study with long-term follow-up.
        J Bone Joint Surg Am. 1979; 61: 1143-1150
        • Loguidice V.A.
        • Johnson R.G.
        • Guyer R.D.
        • Stith W.J.
        • Ohnmeiss D.D.
        • Hochschuler S.H.
        • et al.
        Anterior lumbar interbody fusion.
        Spine. 1988; 13: 366-369
        • Stauffer R.N.
        • Coventry M.B.
        Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series.
        J Bone Joint Surg Am. 1972; 54: 756-768
      7. Fischer CR, Cassilly R, Cantor W, Edusei E, Hammouri Q, Errico T. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2013;22:1423-35.

        • Morris M.T.
        • Tarpada S.P.
        • Cho W.
        Bone graft materials for posterolateral fusion made simple: a systematic review.
        Eur Spine J. 2018; 27: 1856-1867
        • Lee J.H.
        • Kong C.B.
        • Yang J.J.
        • Shim H.J.
        • Koo K.H.
        • Kim J.
        • et al.
        Comparison of fusion rate and clinical results between CaO-SiO2-P2O5-B2O3 bioactive glass ceramics spacer with titanium cages in posterior lumbar interbody fusion.
        Spine J. 2016; 16: 1367-1376
        • Ilharreborde B.
        • Morel E.
        • Fitoussi F.
        • Presedo A.
        • Souchet P.
        • Pennecot G.F.
        • et al.
        Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft.
        J Pediatr Orthop. 2008; 28: 347-351
        • Hench L.L.
        The story of Bioglass.
        J Mater Sci Mater Med. 2006; 17: 967-978
        • Hench L.L.
        • Splinter R.J.
        • Allen W.C.
        • Greenlee T.K.
        Bonding mechanisms at the interface of ceramic prosthetic materials.
        J Biomed Mater Res. 1971; 5: 117-141
        • Hench L.
        Chronology of bioactive glass development and clinical applications.
        New J Glass Ceramics. 2013; 03: 67-73
        • Jones J.R.
        • Brauer D.S.
        • Hupa L.
        • Greenspan D.C.
        Bioglass and Bioactive glasses and their impact on healthcare.
        Int J Appl Glass Sci. 2016; 7: 423-434
        • Baino F.
        • Hamzehlou S.
        • Kargozar S.
        Bioactive glasses: where are we and where are we going?.
        J Funct Biomater. 2018; 9: 25
        • Gupta N.
        • Santhiya D.
        • Murugavel S.
        • Kumar A.
        • Aditya A.
        • Ganguli M.
        • et al.
        Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass.
        Colloids Surf A. 2018; 538: 393-403
        • Jell G.
        • Stevens M.M.
        Gene activation by bioactive glasses.
        J Mater Sci Mater Med. 2006; 17: 997-1002
        • Gerhardt L.-C.
        • Boccaccini A.R.
        Bioactive glass and glass-ceramic scaffolds for bone tissue engineering.
        Materials (Basel). 2010; 3: 3867-3910
        • Valimaki V.V.
        • Aro H.T.
        Molecular basis for action of bioactive glasses as bone graft substitute.
        Scand J Surg. 2006; 95: 95-102
        • Fu Q.
        • Saiz E.
        • Rahaman M.N.
        • Tomsia A.P.
        Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives.
        Mater Sci Eng C Mater Biol Appl. 2011; 31: 1245-1256
        • Kargozar S.
        • Baino F.
        • Hamzehlou S.
        • Hill R.G.
        • Mozafari M.
        Bioactive glasses: sprouting angiogenesis in tissue engineering.
        Trends Biotechnol. 2018; 36: 430-444
        • Gorustovich A.A.
        • Roether J.A.
        • Boccaccini A.R.
        Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences.
        Tissue Eng Part B Rev. 2010; 16: 199-207
        • Drago L.
        • Toscano M.
        • Bottagisio M.
        Recent evidence on bioactive glass antimicrobial and antibiofilm activity: a mini-review.
        Materials (Basel). 2018; 11: 326
        • Lindfors N.
        • Geurts J.
        • Drago L.
        • Arts J.J.
        • Juutilainen V.
        • Hyvonen P.
        • et al.
        Antibacterial bioactive glass, S53P4, for chronic bone infections - a multinational study.
        Adv Exp Med Biol. 2017; 971: 81-92
        • Kargozar S.
        • Baino F.
        • Hamzehlou S.
        • Hill R.G.
        • Mozafari M.
        Bioactive glasses entering the mainstream.
        Drug Discovery Today. 2018; 23: 1700-1704
        • Dong X.
        • Chang J.
        • Li H.
        Bioglass promotes wound healing through modulating the paracrine effects between macrophages and repairing cells.
        J Mater Chem B. 2017; 5: 5240-5250
        • Kaneda K.
        • Asano S.
        • Hashimoto T.
        • Satoh S.
        • Fujiya M.
        The treatment of osteoporotic-posttraumatic vertebral collapse using the Kaneda device and a bioactive ceramic vertebral prosthesis.
        Spine (Phila Pa. 1976; 1992: S295-S303
      8. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z (Editors) Joanna Briggs Institute Reviewer's Manual The Joanna Briggs Institute. 2017.

        • Moher D.
        • Cook D.J.
        • Eastwood S.
        • Olkin I.
        • Rennie D.
        • Stroup D.F.
        Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement Quality of Reporting of Meta-analyses.
        Lancet. 1999; 354: 1896-1900
        • Freeman M.F.
        • Tukey J.W.
        Transformations related to the angular and the square root.
        Ann Math Statist. 1950; 21: 607-611
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188
        • Clopper C.J.
        • Pearson E.S.
        The use of confidence or fiducial limits illustrated in the case of the binomial.
        Biometrika. 1934; 26: 404-413
      9. Takahata M, Kotani Y, Abumi K, Ito M, Takada T, Minami A, et al. An investigational study on the healing process of anterior spinal arthrodesis using a bioactive ceramic spacer and the change in load-sharing of spinal instrumentation. Spine (Phila Pa 1976). 2005;30:E195-203.

        • Smucker J.D.
        • Petersen E.B.
        • Al-Hili A.
        • Nepola J.V.
        • Fredericks D.C.
        Assessment of SiCaP-30 in a rabbit posterolateral fusion model with concurrent chemotherapy.
        Iowa Orthop J. 2015; 35: 140-146
        • Shiels S.M.
        • Talley A.D.
        • McGough M.A.P.
        • Zienkiewicz K.J.
        • Kalpakci K.
        • Shimko D.
        • et al.
        Injectable and compression-resistant low-viscosity polymer/ceramic composite carriers for rhBMP-2 in a rabbit model of posterolateral fusion: a pilot study.
        J Orthop Surg Res. 2017; 12: 107
        • Pugely A.J.
        • Petersen E.B.
        • DeVries-Watson N.
        • Fredericks D.C.
        Influence of 45S5 bioactive glass in a standard calcium phosphate collagen bone graft substitute on the posterolateral fusion of rabbit spine.
        Iowa Orthop J. 2017; 37: 193-198
        • Lindfors N.C.
        • Tallroth K.
        • Aho A.J.
        Bioactive glass as bone-graft substitute for posterior spinal fusion in rabbit.
        J Biomed Mater Res. 2002; 63: 237-244
        • Lindfors N.C.
        • Aho A.J.
        Tissue response to bioactive glass and autogenous bone in the rabbit spine.
        Eur Spine J. 2000; 9: 30-35
        • Lee J.H.
        • Lee C.K.
        • Chang B.S.
        • Ryu H.S.
        • Seo J.H.
        • Hong K.S.
        • et al.
        In vivo study of novel biodegradable and osteoconductive CaO-SiO2-B2O3 glass-ceramics.
        J Biomed Mater Res A. 2006; 77: 362-369
        • Lee J.H.
        • Ryu H.S.
        • Seo J.H.
        • Lee D.Y.
        • Chang B.S.
        • Lee C.K.
        Negative effect of rapidly resorbing properties of bioactive glass-ceramics as bone graft substitute in a rabbit lumbar fusion model.
        Clin Orthop Surg. 2014; 6: 87-95
        • Khoshakhlagh P.
        • Rabiee S.M.
        • Kiaee G.
        • Heidari P.
        • Miri A.K.
        • Moradi R.
        • et al.
        Development and characterization of a bioglass/chitosan composite as an injectable bone substitute.
        Carbohydr Polym. 2017; 157: 1261-1271
        • Ke X.
        • Zhang L.
        • Yang X.
        • Wang J.
        • Zhuang C.
        • Jin Z.
        • et al.
        Low-melt bioactive glass-reinforced 3D printing akermanite porous cages with highly improved mechanical properties for lumbar spinal fusion.
        J Tissue Eng Regen Med. 2018; 12: 1149-1162
        • Fredericks D.
        • Petersen E.B.
        • Watson N.
        • Grosland N.
        • Gibson-Corley K.
        • Smucker J.
        Comparison of Two Synthetic Bone Graft Products in a Rabbit Posterolateral Fusion Model.
        Iowa Orthop J. 2016; 36: 167-173
        • Lee J.H.
        • Park K.-W.
        • Song K.S.
        • Ryu H.-S.
        • Seo J.-H.
        • Hong K.S.
        • et al.
        Evaluation of Osteosynthesis in CaO-SiO2-P2O5-B2O3 Glass-ceramics by Posterolateral Fusion of Rabbit Lumbar vertebrae.
        J Korean Soc Spine Surg. 2005; 12: 1-11
        • Acharya N.K.
        • Kumar R.J.
        • Varma H.K.
        • Menon V.K.
        Hydroxyapatite-bioactive glass ceramic composite as stand-alone graft substitute for posterolateral fusion of lumbar spine: a prospective, matched, and controlled study.
        J Spinal Disord Tech. 2008; 21: 106-111
        • Ameri E.
        • Behtash H.
        • Mobini B.
        • Omidi-Kashani F.
        • Nojomi M.
        Bioactive Glass versus Autogenous Iliac Crest Bone Graft in Adolescent Idiopathic Scoliosis Surgery.
        Acta Medica Iranica. 2012; 47
        • Barrey C.
        • Broussolle T.
        Clinical and radiographic evaluation of bioactive glass in posterior cervical and lumbar spinal fusion.
        Eur J Orthop Surg Traumatol. 2019;
        • Frantzen J.
        • Rantakokko J.
        • Aro H.T.
        • Heinanen J.
        • Kajander S.
        • Gullichsen E.
        • et al.
        Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up.
        J Spinal Disord Tech. 2011; 24: 455-461
      10. Hashimoto T, Shigenobu K, Kanayama M, Harada M, Oha F, Ohkoshi Y, et al. Clinical results of single-level posterior lumbar interbody fusion using the Brantigan I/F carbon cage filled with a mixture of local morselized bone and bioactive ceramic granules. Spine (Phila Pa 1976). 2002;27:258-62.

        • Ido K.
        • Asada Y.
        • Sakamoto T.
        • Hayashi R.
        • Kuriyama S.
        Radiographic evaluation of bioactive glass-ceramic grafts in postero-lateral lumbar fusion.
        Spinal Cord. 2000; 38: 315-318
        • Kanayama M.
        • Ishida T.
        • Hashimoto T.
        • Shigenobu K.
        • Togawa D.
        • Oha F.
        • et al.
        Role of major spine surgery using Kaneda anterior instrumentation for osteoporotic vertebral collapse.
        J Spinal Disord Tech. 2010; 23: 53-56
        • Kasai Y.
        • Takegami K.
        • Uchida A.
        Mixture ratios of local bone to artificial bone in lumbar posterolateral fusion.
        J Spinal Disord Tech. 2003; 16: 31-37
        • Rantakokko J.
        • Frantzen J.P.
        • Heinanen J.
        • Kajander S.
        • Kotilainen E.
        • Gullichsen E.
        • et al.
        Posterolateral spondylodesis using bioactive glass S53P4 and autogenous bone in instrumented unstable lumbar spine burst fractures. A prospective 10-year follow-up study.
        Scand J Surg. 2012; 101: 66-71
        • Chun D.S.
        • Baker K.C.
        • Hsu W.K.
        Lumbar pseudarthrosis: a review of current diagnosis and treatment.
        Neurosurg Focus. 2015; 39: E10
        • McAnany S.J.
        • Baird E.O.
        • Overley S.C.
        • Kim J.S.
        • Qureshi S.A.
        • Anderson P.A.
        A meta-analysis of the clinical and fusion results following treatment of symptomatic cervical pseudarthrosis.
        Global Spine J. 2015; 5: 148-155
        • Gupta A.
        • Kukkar N.
        • Sharif K.
        • Main B.J.
        • Albers C.E.
        • El-Amin Iii S.F.
        Bone graft substitutes for spine fusion: a brief review.
        World J Orthop. 2015; 6: 449-456
        • Duarte R.
        • Varanda P.
        • Reis R.
        • Duarte A.R.C.
        • Correia-Pinto J.
        Biomaterials and bioactive agents in spinal fusion.
        Tissue Eng Part B Rev. 2017; 23: 540-551
        • Ehrler D.M.
        • Vaccaro A.R.
        The use of allograft bone in lumbar spine surgery.
        Clin Orthop Relat Res. 2000; 38–45
        • Tuchman A.
        • Brodke D.S.
        • Youssef J.A.
        • Meisel H.J.
        • Dettori J.R.
        • Park J.B.
        • et al.
        Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: a systematic review.
        Global Spine J. 2016; 6: 592-606
        • Kargozar S.
        • Montazerian M.
        • Fiume E.
        • Baino F.
        Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering.
        Front Bioeng Biotechnol. 2019.; 7
        • Nickoli M.S.
        • Hsu W.K.
        Ceramic-based bone grafts as a bone grafts extender for lumbar spine arthrodesis: a systematic review.
        Global Spine J. 2014; 4: 211-216