Advertisement

Possible therapies of Parkinson’s disease: A review

Published:April 01, 2020DOI:https://doi.org/10.1016/j.jocn.2020.03.024

      Highlights

      • Parkinson's disease (PD) is a complex condition with a wide range of symptoms, like impaired movement, tremors, apathy and depression, and many other symptoms. The disease results from degeneration of dopaminergic neural cells. No cure at present but symptomatic some palliative treatments are available to slow down the disease progression.
      • According to the Parkinson’s Foundation every year in U.S., approximately 60,000 Americans diagnosed with PD. Nearly one million will be living with PD in the U.S. by 2020, which is more than the combined number of people diagnosed with multiple sclerosis, muscular dystrophy and Amyotrophic Lateral Sclerosis (ALS).
      • There is no diagnostic test for PD, yet, but this article will review all kinds symptomatic and disease-modifying therapy. Among all, Cell therapy seems to be the best option considering its vast applicability to this idiopathic disease, PD.

      Abstract

      Parkinson's disease (PD) is a complex condition with a wide range of symptoms, like impaired movement, tremors, apathy and depression, and many other symptoms. The disease results from degeneration of dopaminergic neural cells. No cure at present but symptomatic some palliative treatments are available to slow down the disease progression. According to the Parkinson’s Foundation every year in U.S., approximately 60,000 Americans diagnosed with PD. Nearly one million will be living with PD in the U.S. by 2020, which is more than the combined number of people diagnosed with multiple sclerosis, muscular dystrophy and Amyotrophic Lateral Sclerosis (ALS).
      There is no diagnostic test for PD, yet, but this article will review all kinds symptomatic and disease-modifying therapy.

      Abbreviations:

      PD (Parkinson's disease), ALS (amyotrophic lateral sclerosis), SN (Substantia Nigra), l-Dopa (l-Dihydroxyphenylalanine), Mao-B (monoamino oxidase-B), COMT (catechol-o-methyl-transferase), iPSCs (induced pluripotent stem cells), PARK1 (gene which code foralpha-synuclein (SNCA)), DJ1 (protein deglycase DJ-1, also known as Parkinson disease protein 7), LRRK2 (leucine-rich repeat kinase 2), MAPT (microtubule-associated protein tau), NMS (non-motor symptoms), PINK1 (PTEN-induced putative kinase 1)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alexander G.E.
        Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder.
        Dialogues Clin Neurosci. 2004; 6: 259-280
        • Haddad F.
        • Sawalha M.
        • Khawaja Y.
        • Najjar A.
        • Karaman R.
        Dopamine and levodopa prodrugs for the treatment of Parkinson’s disease.
        Molecules. 2018; 23: 1-17
        • Asanuma M.
        • Miyazaki I.
        • Ogawa N.
        Dopamine or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease.
        Neurotox Res. 2003; 5: 165-176
        • Sveinbjornsdottir S.
        The clinical symptoms of Parkinson's disease.
        Journal of Neurochemistry. 2016; 139: 318-324
        • Stoker T.B.
        • Torsney K.M.
        • Barker R.A.
        Emerging treatment approaches for Parkinson’s disease.
        Front Neurosci. 2018; 12: 693-703
        • Borovac J.A.
        Side effects of a dopamine agonist therapy for Parkinson's disease: a mini-review of clinical pharmacology.
        Yale J Biol Med. 2016; 89: 37-47
        • Teo K.C.
        • Ho S.
        Monoamine oxidase-B (MAO-B) inhibitors: implications for disease-modification in Parkinson’s disease.
        Transl Neurodegener. 2013; 2: 19-29https://doi.org/10.1186/2047-9158-2-19
        • Rivest J.
        • Barclay C.
        • Suchowersky O.
        COMT inhibitors in Pakinson’s Disease.
        Can J Neurol Sci. 1999; 26: S34-S38https://doi.org/10.1017/S031716710000007X
        • Deal JA
        • Betz J.
        • Yaffe K.
        • Harris T.
        • Purchase-Helzner E.
        • Suzanne Satterfield S.
        • et al.
        Hearing Impairment and Incident Dementia and Cognitive Decline in Older Adults: The Health ABC Study.
        J Gerontol A Biol Sci Med Sci. 2017; 72: 703-709
        • Wang W.W.
        • Zhang M.M.
        • Zhang X.R.
        • Zhang Z.R.
        • Chen J.
        • Feng L.
        • et al.
        A meta-analysis of adenosine A2A receptor antagonists on Levodopa-induced dyskinesia in vivo.
        Front Neurol. 2017; 8: 702-711
        • Deuschl G.
        • Schade-Brittinger C.
        • Krack P.
        • Volkmann J.
        • Schäfer H.
        • Bötzel K.
        • et al.
        A randomized trial of deep brain stimulation for Parkinson’s disease.
        N Engl J Med. 2006; 355: 896-908
        • Schuepbach W.M.
        • Rau J.
        • Knudsen K.
        • Volkmann J.
        • Krack P.
        • Timmermann L.
        • et al.
        Neurostimulation for Parkinson’s disease with early motor complications.
        N Engl J Med. 2013; 368: 610-622
        • Barbe M.T.
        • Maarouf M.
        • Alesch F.
        Timmermann L Multiple source current steering–a novel deep brain stimulation concept for customized programming in a Parkinson’s disease patient.
        Parkinsonism Relat Disord. 2014; 20: 471-473
      1. Timmermann L, Jain R, Chen L, Brucke T, Seijo F, San Martin ES, et al. '134 VANTAGE trial: three-year outcomes of a prospective, multicenter trial evaluating deep brain stimulation with a new multiple-source, constant-current rechargeable system in parkinson disease'; 2016. pp. 155. doi:10.1227/01.neu.0000489704.68466.0a.

        • McIntyre C.C.
        • Anderson R.W.
        Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation.
        J Neurochem. 2016; 139: 338-345
        • Gaillard A.
        • Jaber J.
        Rewiring the brain with cell transplantation in Parkinson’s disease.
        Trends Neurosci. 2011; 34: 124-133
        • Kirkeby A.
        • Grealish S.
        • Wolf D.A.
        • Nelander J.
        • Wood J.
        • Lundblad M.
        • et al.
        Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions.
        Cell Rep. 2012; 1: 703-714
        • Yang F.
        • Liu Y.
        • Tu J.
        • Wan J.
        • Zhang J.
        • Wu B.
        • et al.
        Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF.
        Nat Commun. 2014; 5: 5627https://doi.org/10.1038/ncomms6627
        • Christophersen N.S.
        • Meijer X.
        • Jorgensen J.R.
        • Englund U.
        • Gronborg M.
        • Seiger A.
        • et al.
        Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain.
        Brain Res Bull. 2006; 70: 457-466
        • Knoepfler P.S.
        Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine.
        Stem Cells. 2009; 27: 1050-1056
        • Medvedev S.P.
        • Shevchenko A.I.
        • Zakian S.M.
        Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine.
        Acta Nat. 2010; 2: 18-28
        • Lim M.S.
        • Shin M.S.
        • Lee S.Y.
        • Minn Y.K.
        • Hoh J.K.
        • Cho Y.H.
        • et al.
        Noggin over-expressing mouse embryonic fibroblasts and ms5 stromal cells enhance directed differentiation of dopaminergic neurons from human embryonic stem cells.
        PLoS One. 2015; 10e0138460
        • Costin G.-E.
        • Hearing V.J.
        Human skin pigmentation: melanocytes modulate skin color in response to stress.
        FASEB J. 2007; 21: 976-994
        • Rios M.
        • Habecker B.
        • Sasaoka T.
        • Eisenhofer G.
        • Tian H.
        • Landis S.
        • et al.
        Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase.
        J Neurosci. 1999; 19: 3519-3526
        • Asanuma M.
        • Miyazaki I.
        • Diaz-Corrales F.
        • Higashi Y.
        • Namba M.
        • Ogawa N.
        Transplantation of melanocytes obtained from the skin ameliorates apomorphine-induced abnormal behavior in rodent hemi-parkinsonian models.
        PLoS One. 2013; 8e65983
        • Zhang M.
        Two-step production of monoamines in monoenzymatic cells in the spinal cord: a different control strategy of neurotransmitter supply?.
        Neural Regen Res. 2016; 11: 1904-1909
        • Keber U.
        • Klietz M.
        • Carlsson T.
        • Oertel W.H.
        • Weihe E.
        • Schäfer M.K.
        • et al.
        Striatal tyrosine hydroxylase-positive neurons are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice.
        Neuroscience. 2015; 298: 302-317
        • Colette Daubner S.
        • Le T.
        • Wang S.
        Tyrosine hydroxylase and regulation of dopamine synthesis.
        Arch Biochem Biophys. 2011; 508: 1-12
        • German C.L.
        • Baladi M.G.
        • McFadden L.M.
        • Hanson G.R.
        • Fleckenstein A.E.
        Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease.
        Pharmacol Rev. 2015; 67: 1005-1024
        • Spillantini M.G.
        • Schmidt M.L.
        • Lee V.M.
        • Trojanowski J.Q.
        • Jakes R.
        • Goedert M.
        Alpha-synuclein in Lewy bodies.
        Nature. 1997; 388: 839-840
        • Polymeropoulos M.H.
        • Lavedan C.
        • Leroy E.
        • Ide S.E.
        • Dehejia A.
        • Dutra A.
        • et al.
        Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.
        Science. 1997; 276: 2045-2047
        • Hernandez D.G.
        • Reed X.
        • Singleton A.B.
        Genetics in Parkinson disease: mendelian versus non-mendelian inheritance.
        J Neurochem. 2016; 139: 59-74
        • Schulte C.
        • Gasser T.
        Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression.
        Appl Clin Genet. 2011; 4: 67-80
        • Le W.
        • Pan T.
        • Huang M.
        • Xu P.
        • Xie W.
        • Zhu W.
        • et al.
        Decreased NURR1 gene expression in patients with Parkinson’s disease.
        J Neurol Sci. 2008; 273: 29-33
        • Oh S.M.
        • Chang M.Y.
        • Song J.J.
        • Rhee Y.H.
        • Joe E.H.
        • Lee H.S.
        • et al.
        Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease.
        EMBO. 2016; 8: 171
        • Dong J.
        • Li S.
        • Mo J.L.
        • Cai H.B.
        • Le W.D.
        Nurr1-based therapies for Parkinson’s disease.
        CNS Neurosci Ther. 2016; 22: 351-359
        • Healy D.G.
        • Falchi M.
        • O’Sullivan S.S.
        • Bonifati V.
        • Durr A.
        • Bressman S.
        • et al.
        Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study.
        Lancet Neurol. 2008; 7: 583-590
        • Kang U.B.
        • Marto J.A.
        Leucine-rich repeat kinase 2 and Parkinson’s disease.
        Proteomics. 2017; 17: 1-2
        • Follett J.
        • Bugarcic A.
        • Yang Z.
        • Ariotti N.
        • Norwood S.J.
        • Collins B.M.
        • et al.
        Parkinson disease-linked Vps35 R524W mutation impairs the endosomal association of retromer and induces alpha-synuclein aggregation.
        J Biol Chem. 2016; 291: 18283-18298
        • Girard M.
        • Poupon V.
        • Blondeau F.
        • McPherson P.S.
        The DnaJ-domain protein RME-8 functions in endosomal trafficking.
        J Biol Chem. 2005; 280: 40135-40143
        • Gustavsson E.K.
        • Trinh J.
        • Guella I.
        • Vilarino-Guell C.
        • Appel-Cresswell S.
        • Stoessl A.J.
        • et al.
        DNAJC13 genetic variants in parkinsonism.
        Mov Disord. 2015; 30: 273-278
        • Schrag A.
        • Schott J.M.
        Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism.
        Lancet Neurol. 2006; 5: 355-363
        • Lucking C.B.
        • Durr A.
        • Bonifati V.
        • Vaughan J.
        • De Michele G.
        • Gasser T.
        • et al.
        Association between early-onset Parkinson’s disease and mutations in the parkin gene.
        N Engl J Med. 2006; 342: 1560-1567
        • Ledford H.
        CRISPR, the disruptor.
        Nature. 2015; 522: 20-24
        • Schenk D.B.
        • Koller M.
        • Ness D.K.
        • Griffith S.G.
        • Grundman M.
        • Zago W.
        • et al.
        First-in-human assessment of PRX002, an anti-α-synuclein monoclonal antibody, in healthy volunteers.
        Mov Disord. 2017; 32: 211-218
        • Schneeberger A.
        • Tierney L.
        • Mandler M.
        Active immunization therapies for Parkinson's disease and multiple system atrophy.
        Mov Disord. 2016; 31: 214-224
        • Manfredsson F.P.
        • Tansey M.G.
        • Golde T.E.
        Challenges in passive immunization strategies to treat parkinson disease.
        JAMA Neurol. 2018; 75: 1180-1181
        • Martínez-Fernández R.
        • Schmitt E.
        • Martinez-Martin P.
        • Krack P.
        The hidden sister of motor fluctuations in Parkinson’s disease: a review on nonmotor fluctuations.
        Mov Disord. 2016; 31: 1080-1094
        • LaHue S.C.
        • Comella C.L.
        • Tanner C.M.
        The best medicine? The influence of physical activity and inactivity on Parkinson’s disease.
        Mov Disord. 2016; 31: 1444-1454
        • Antelmi E.
        • Donadio V.
        • Incensi P.G.
        • Plazzi G.
        • Liguori R.
        Skin nerve phosphorylated α-synuclein deposits in idiopathic REM sleep behavior disorder.
        Neurology. 2017; 88: 2128-2131
        • Doppler K.
        • Jentschke H.M.
        • Schulmeyer L.
        • Vadasz D.
        • Janzen A.
        • Luster M.
        • et al.
        Dermal phospho-alpha-synuclein deposits confirm REM sleep behavior disorder as prodromal Parkinson's disease.
        Acta Neuropathol. 2017; 133: 535-545https://doi.org/10.1007/s00401-017-1684-z
        • Meles S.K.
        • Vadasz D.
        • Renken R.J.
        • Sittig-Wiegand E.
        • Mayer G.
        • Depboylu C.
        • et al.
        FDG PET, dopamine transporter SPECT, and olfaction: combining biomarkers in REM sleep behavior disorder.
        Mov Disord. 2017; 32: 1482-1486
        • Chakraborty A.
        • Diwan A.
        Selection of Cells for Parkinson’s Disease Cell-Therapy.
        Int J Stem Cell Res Ther. 2019; 6: 063https://doi.org/10.23937/2469-570X/1410063
        • Chao D.
        • Ma L.
        • Shen K
        Transient cell–cell interactions in neural circuit formation..
        Nat Rev Neurosci. 2009; 10: 262-271https://doi.org/10.1038/nrn2594
        • Jiao Q.
        • Li X.
        • An J.
        • et al.
        Cell-Cell Connection Enhances Proliferation and Neuronal Differentiation of Rat Embryonic Neural Stem/Progenitor Cells.
        Front Cell Neurosci. 2017; 11: 200https://doi.org/10.3389/fncel.2017.00200