Review article| Volume 75, P5-10, May 2020

Download started.


Neuroinflammation and depressive disorder: The role of the hypothalamus

  • Alena Cernackova
    Corresponding author at: Institute of Physiology, Faculty of Medicine, Sasinkova 2, 813 72 Bratislava, Slovakia.
    Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia

    Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
    Search for articles by this author
  • Zdenka Durackova
    Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University in Bratislava, Slovakia
    Search for articles by this author
  • Jana Trebaticka
    Department of Child and Adolescent Psychiatry, Faculty of Medicine, Comenius University and Child University Hospital, Bratislava, Slovakia
    Search for articles by this author
  • Boris Mravec
    Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia

    Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
    Search for articles by this author
Published:March 23, 2020DOI:


      • Hypothalamic inflammation is associated with both somatic and psychiatric diseases.
      • Stress exposure may induce expression of inflammatory molecules in the hypothalamus.
      • Stress, depressive disorder and somatic diseases may be interconnected in hypothalamic inflammation.


      Data accumulated over the last two decades has demonstrated that hypothalamic inflammation plays an important role in the etiopathogenesis of the most prevalent diseases, such as cardiovascular diseases, metabolic syndrome, and even cancer. Recent findings indicate that hypothalamic inflammation is also associated with stress exposure and certain psychiatric diseases, such as depressive disorder. Mechanistic studies have shown that intense and/or chronic stress exposure is accompanied by the synthesis of inflammatory molecules in the hypothalamus, altered hypothalamic–pituitary-adrenal axis activity, and development of glucocorticoid resistance. Consequently, these factors might play a role in the etiopathogenesis of psychiatric disorders. We propose that hypothalamic inflammation represents an interconnection between somatic diseases and depressive disorder. These assumptions are discussed in this mini-review in the light of available data from studies focusing on hypothalamic inflammation.

      Graphical abstract


      ACTH (adrenocorticotropic hormone), ATP (adenosine triphosphate), BDNF (brain derived neutrophic factor), CNS (central nervous system), CRH (corticoliberin), FA (fatty acids), FGF (fibroblast growth factor), GR (glucocorticoid receptor), HPA axis (hypothalamic–pituitary-adrenal axis), Iba1 (calcium-binding adapter molecule 1), ICAM-1 (intracellular cell adhesion molecule 1), IDO (indoleamine 2,3-dioxygenase), IFN-α (interferon α), IL-1β (interleukin 1β), IL-2 (interleukin 2), IL-6 (interleukin 6), IL-10 (interleukin 10), ISC (immune system cells), MAT (metabolically active tissue), NCAM (neural cell adhesion molecule), NF-κB (nuclear factor kappa B), NLRP3 (NOD-like receptor 3), NMDA (N-methyl-D-aspartate), TLRs (toll-like receptors), TNF-α (tumor necrosis factor α), Trp (tryptophan), VCAM-1 (vascular cell adhesion molecule 1), SSRIs (selective serotonin reuptake inhibitors)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Goldstein D.S.
        • Kopin I.J.
        Homeostatic systems, biocybernetics, and autonomic neuroscience.
        Auton Neurosci. 2017; 208: 15-28
        • Burfeind K.G.
        • Michaelis K.A.
        • Marks D.L.
        The central role of hypothalamic inflammation in the acute illness response and cachexia.
        Semin Cell Dev Biol. 2016; 54: 42-52
        • de Git K.C.G.
        • Adan R.A.H.
        Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation.
        Obes Rev. 2015; 16: 207-224
        • Rahman M.H.
        • Bhusal A.
        • Lee W.H.
        • Lee I.K.
        • Suk K.
        Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: translational significance.
        Biochem Pharmacol. 2018;
        • Pimentel G.D.
        • Ganeshan K.
        • Carvalheira J.B.
        Hypothalamic inflammation and the central nervous system control of energy homeostasis.
        Mol Cell Endocrinol. 2014; 397: 15-22
        • Valdearcos M.
        • Xu A.W.
        • Koliwad S.K.
        Hypothalamic inflammation in the control of metabolic function.
        Annu Rev Physiol. 2015; 77: 131-160
        • Tafet G.E.
        • Nemeroff C.B.
        The links between stress and depression: psychoneuroendocrinological, genetic, and environmental interactions.
        J Neuropsychiatry Clin Neurosci. 2016; 28: 77-88
        • Heim C.
        • Newport D.J.
        • Mletzko T.
        • Miller A.H.
        • Hemeroff C.B.
        The link between childhood trauma and depression: insights from HPA axis studies in humans.
        Psychoneuroendocrino. 2008; 33: 693-710
        • Sawicki C.M.
        • Mckim D.B.
        • Wohleb E.S.
        • Jarrett B.L.
        • Reader B.F.
        • Norden D.M.
        • et al.
        Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.
        Neuroscience. 2015; 302: 151-164
        • Blandino P.
        • Barnum C.J.
        • Solomon L.G.
        • Larish Y.
        • Lankow B.S.
        • Deak T.
        Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL-1 and microglial markers after acute stress.
        Brain Behav Immun. 2009; 23: 958-968
        • Duque E.D.
        • Munhoz C.D.
        The pro-inflammatory effects of glucocorticoids in the brain.
        Front Endocrinol. 2016; 7
        • McEwen B.S.
        Physiology and neurobiology of stress and adaptation: central role of the brain.
        Physiol Rev. 2007; 87: 873-904
        • Merkulov V.M.
        • Merkulova T.I.
        • Bondar N.P.
        Mechanisms of brain glucocorticoid resistance in stress-induced psychopathologies.
        Biochem-Moscow+. 2017; 82: 351-365
        • Kopp B.L.
        • Wick D.
        • Herman J.P.
        Differential effects of homotypic vs. heterotypic chronic stress regimens on microglial activation in the prefrontal cortex.
        Physiol Behav. 2013; 122: 246-252
        • Wohleb E.S.
        • Fenn A.M.
        • Pacenta A.M.
        • Powell N.D.
        • Sheridan J.F.
        • Godbout J.P.
        Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice.
        Psychoneuroendocrino. 2012; 37: 1491-1505
        • Wohleb E.S.
        • Hanke M.L.
        • Corona A.W.
        • Powell N.D.
        • Stiner L.M.
        • Bailey M.T.
        • et al.
        beta-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.
        J Neurosci. 2011; 31: 6277-6288
        • Frank M.G.
        • Hershman S.A.
        • Weber M.D.
        • Watkins L.R.
        • Maier S.F.
        Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus.
        Psychoneuroendocrino. 2014; 40: 191-200
        • Lehnardt S.
        • Cameron J.
        • Massillon L.
        • Follett P.
        • Jensen F.E.
        • Ratan R.
        • et al.
        Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4 dependent pathway.
        Mol Biol Cell. 2002; 13: 537a-538a
        • Olson J.K.
        • Miller S.D.
        Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs.
        J Immunol. 2004; 173: 3916-3924
        • Calcia M.A.
        • Bonsall D.R.
        • Bloomfield P.S.
        • Selvaraj S.
        • Barichello T.
        • Howes O.D.
        Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness.
        Psychopharmacology. 2016; 233: 1637-1650
        • Busillo J.M.
        • Azzam K.M.
        • Cidlowski J.A.
        Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome.
        J Biol Chem. 2011; 286: 38703-38713
        • Minami M.
        • Kuraishi Y.
        • Yamaguchi T.
        • Nakai S.
        • Hirai Y.
        • Satoh M.
        Immobilization stress induces interleukin-1 beta mRNA in the rat hypothalamus.
        Neurosci Lett. 1991; 123: 254-256
        • Silverman M.N.
        • Pearce B.D.
        • Biron C.A.
        • Miller A.H.
        Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection.
        Viral Immunol. 2005; 18: 41-78
        • Goshen I.
        • Yirmiya R.
        Interleukin-1 (IL-1): A central regulator of stress responses.
        Front Neuroendocrin. 2009; 30: 30-45
        • Escoll P.
        • Ranz I.
        • Munoz-Anton N.
        • van-den-Rym A.
        • Alvarez-Mon M.
        • Martinez-Alonso C.
        • et al.
        Sustained interleukin-1 beta exposure modulates multiple steps in glucocorticoid receptor signaling, promoting split-resistance to the transactivation of prominent anti-inflammatory genes by glucocorticoids.
        Mediat Inflamm. 2015;
        • Audet M.C.
        • Jacobson-Pick S.
        • Wann B.P.
        • Anisman H.
        Social defeat promotes specific cytokine variations within the prefrontal cortex upon subsequent aggressive or endotoxin challenges.
        Brain Behav Immun. 2011; 25: 1197-1205
        • Kennedy S.H.
        Core symptoms of major depressive disorder: relevance to diagnosis and treatment.
        Dialogues Clin Neurosci. 2008; 10: 271-277
        • Lotrich F.E.
        • Rabinovitz M.
        • Gironda P.
        • Pollock B.G.
        Depression following pegylated interferon-alpha: Characteristics and vulnerability.
        J Psychosom Res. 2007; 63: 131-135
        • Eton O.
        • Rosenblum M.G.
        • Legha S.S.
        • Zhang W.H.
        • East M.J.
        • Bedikian A.
        • et al.
        Phase I trial of subcutaneous recombinant human interleukin-2 in patients with metastatic melanoma.
        Cancer. 2002; 95: 127-134
        • Murray C.J.L.
        • Lopez A.D.
        Global mortality, disability, and the contribution of risk factors: global burden of disease study.
        Lancet. 1997; 349: 1436-1442
        • Dowlati Y.
        • Herrmann N.
        • Swardfager W.
        • Liu H.
        • Sham L.
        • Reim E.K.
        • et al.
        A meta-analysis of cytokines in major depression.
        Biol Psychiat. 2010; 67: 446-457
        • Diniz B.S.
        • Teixeira A.L.
        • Talib L.
        • Gattaz W.F.
        • Forlenza O.V.
        Interleukin-1beta serum levels is increased in antidepressant-free elderly depressed patients.
        Am J Geriatric Psychiatry: Off J Am Assoc Geriatric Psychiatry. 2010; 18: 172-176
        • Shelton R.C.
        • Claiborne J.
        • Sidoryk-Wegrzynowicz M.
        • Reddy R.
        • Aschner M.
        • Lewis D.A.
        • et al.
        Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression.
        Mol Psychiatr. 2011; 16: 751-762
        • Goshen I.
        • Kreisel T.
        • Ben-Menachem-Zidon O.
        • Licht T.
        • Weidenfeld J.
        • Ben-Hur T.
        • et al.
        Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression.
        Mol Psychiatr. 2008; 13: 717-728
        • Capuron L.
        • Ravaud A.
        • Neveu P.J.
        • Miller A.H.
        • Maes M.
        • Dantzer R.
        Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy.
        Mol Psychiatr. 2002; 7: 468-473
        • Sudheimer K.
        • Keller J.
        • Gomez R.
        • Tennakoon L.
        • Reiss A.
        • Garrett A.
        • et al.
        Decreased hypothalamic functional connectivity with subgenual cortex in psychotic major depression.
        Neuropsychopharmacol. 2015; 40: 849-860
        • Varghese F.P.
        • Brown E.S.
        The hypothalamic-pituitary-adrenal axis in major depressive disorder: a brief primer for primary care physicians.
        Primary Care Companion J Clin Psychiatry. 2001; 3: 151-155
        • Martinac M.
        • Babic D.
        • Bevanda M.
        • Vasilj I.
        • Glibo D.B.
        • Karlovic D.
        • et al.
        Activity of the hypothalamic-pituitary-adrenal axis and inflammatory mediators in major depressive disorder with or without metabolic syndrome.
        Psychiat Danub. 2017; 29: 39-50
        • Levine J.
        • Barak Y.
        • Chengappa K.N.R.
        • Rapoport A.
        • Rebey M.
        • Barak V.
        Cerebrospinal cytokine levels in patients with acute depression.
        Neuropsychobiology. 1999; 40: 171-176
        • Cohen S.
        • Janicki-Deverts D.
        • Doyle W.J.
        • Miller G.E.
        • Frank E.
        • Rabin B.S.
        • et al.
        Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk.
        P Natl Acad Sci USA. 2012; 109: 5995-5999
        • Webster J.C.
        • Oakley R.H.
        • Jewell C.M.
        • Cidlowski J.A.
        Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: A mechanism for the generation of glucocorticoid resistance.
        P Natl Acad Sci USA. 2001; 98: 6865-6870
        • Hestad K.A.
        • Engedal K.
        • Whist J.E.
        • Farup P.G.
        The relationships among tryptophan, kynurenine, indoleamine 2,3-Dioxygenase, depression, and neuropsychological performance.
        Front Psychol. 2017; 8
        • Tatomir A.
        • Micu C.
        • Crivii C.
        The impact of stress and glucocorticoids on memory.
        Clujul Med. 2014; 87: 3-6
        • Linthorst A.C.E.
        • Flachskamm C.
        • Holsboer F.
        • Reul J.M.H.M.
        Local-administration of recombinant human Interleukin-1-beta in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity, and body-temperature.
        Endocrinology. 1994; 135: 520-532
        • Shintani F.
        • Kanba S.
        • Nakaki T.
        • Nibuya M.
        • Kinoshita N.
        • Suzuki E.
        • et al.
        Interleukin-1-Beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus.
        J Neurosci. 1993; 13: 3574-3581
        • Myint A.M.
        • Kim Y.K.
        • Verkerk R.
        • Scharpe S.
        • Steinbusch H.
        • Leonard B.
        Kynurenine pathway in major depression: evidence of impaired neuroprotection.
        J Affect Disorders. 2007; 98: 143-151
        • Dantzer R.
        • O'Connor J.C.
        • Freund G.G.
        • Johnson R.W.
        • Kelley K.W.
        From inflammation to sickness and depression: when the immune system subjugates the brain.
        Nat Rev Neurosci. 2008; 9: 46-57
        • Niciu M.J.
        • Kelmendi B.
        • Sanacora G.
        Overview of glutamatergic neurotransmission in the nervous system.
        Pharmacol Biochem Be. 2012; 100: 656-664
        • Ogyu K.
        • Kubo K.
        • Noda Y.
        • Iwata Y.
        • Tsugawa S.
        • Omura Y.
        • et al.
        Kynurenine pathway in depression: A systematic review and meta-analysis.
        Neurosci Biobehav R. 2018; 90: 16-25
        • Liu Y.Z.
        • Wang Y.X.
        • Jiang C.L.
        Inflammation: the common pathway of stress-related diseases.
        Front Hum Neurosci. 2017; 11
        • Slavich G.M.
        • Irwin M.R.
        From stress to inflammation and major depressive disorder: a social signal transduction theory of depression.
        Psychol Bull. 2014; 140: 774-815
        • Zhang Y.X.
        • Chen Y.J.
        • Ma L.N.
        Depression and cardiovascular disease in elderly: current understanding.
        J Clin Neurosci. 2018; 47: 1-5
        • Mravec B.
        • Horvathova L.
        • Cernackova A.
        Hypothalamic inflammation at a crossroad of somatic diseases.
        Cell Mol Neurobiol. 2019; 39: 11-29
      1. Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, et al. IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKK beta and ER Stress Inhibition. Plos Biol. 2010;8.

        • Lira F.S.
        • Yamashita A.S.
        • Rosa J.C.
        • Tavares F.L.
        • Caperuto E.
        • Carnevali L.C.
        • et al.
        Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats.
        Nutr Metab. 2011; 8
        • Black D.S.
        • Slavich G.M.
        Mindfulness meditation and the immune system: a systematic review of randomized controlled trials.
        Spec Issue: Adv Meditation Res. 2016; 1373: 13-24
        • Kiecolt-Glaser J.K.
        • Christian L.
        • Preston H.
        • Houts C.R.
        • Malarkey W.B.
        • Emery C.F.
        • et al.
        Stress, inflammation, and yoga practice.
        Psychosom Med. 2010; 72: 113-121
        • Mooventhan A.
        • Nivethitha L.
        Evidence based effects of yoga in neurological disorders.
        J Clin Neurosci. 2017; 43: 61-67
        • Husted K.S.
        • Bouzinova E.V.
        The importance of n-6/n-3 fatty acids ratio in the major depressive disorder.
        Medicina-Lithuania. 2016; 52: 139-147
      2. Durackova Z, Trebatickỳ B, Trebatická J, Muchová J. Targeting mitochondria with natural antioxidants. 2018. p. 293-323.

        • Trebaticka J.
        • Hradecna Z.
        • Bohmer F.
        • Vavakova M.
        • Waczulikova I.
        • Garaiova I.
        • et al.
        Emulsified omega-3 fatty-acids modulate the symptoms of depressive disorder in children and adolescents: a pilot study.
        Child Adol Psych Men. 2017; 11
        • Galecki P.
        • Mossakowska-Wojcik J.
        • Talarowska M.
        The anti-inflammatory mechanism of antidepressants – SSRIs, SNRIs.
        Prog Neuro-Psychoph. 2018; 80: 291-294
        • Bremner P.
        • Heinrich M.
        Natural products as targeted modulators of the nuclear factor-kappa B pathway.
        J Pharm Pharmacol. 2002; 54: 453-472
        • Viatour P.
        • Merville M.P.
        • Bours V.
        • Chariot A.
        Phosphorylation of NF-kappa B and I kappa B proteins: implications in cancer and inflammation.
        Trends Biochem Sci. 2005; 30: 43-52