Advertisement

A preliminary data: Evaluation of serum Galectin-3 levels in patients with Idiopathic Parkinson's Disease

Published:August 27, 2019DOI:https://doi.org/10.1016/j.jocn.2019.08.032

      Highlights

      • Galectin-3, a new biomarker candidate in neurodegenerative diseases.
      • Also, microglial activation has been associated with many neurodegenerative diseases.
      • Maybe, Galectin-3 is a new biomarker in Parkinson disease.

      Abstract

      Aim

      In our study, we aimed to collect data for the hypothesis that Galectin-3 might be used as a new prognostic and therapeutic biomarker in Idiopathic Parkinson's Disease (IPD).

      Method

      In this prospective and cross-sectional study, the Unified Parkinson's Disease Rating Scale (UPDRS) and Modified Hoehn and Yahr (H&Y) scales were applied to each patient diagnosed as IPD according to the UK Brain Bank diagnostic criteria. The control group consisted of healthy individuals with the same age, gender, and body mass index characteristics as the patients meeting the exclusion criteria.

      Results

      A total of 111 cases were included in the study, 48 were IPD, and 63 were healthy controls. There were no statistically significant differences between the IPD and control groups in terms of demographic, anthropometric, and blood parameters (p > 0.05). Serum galectin-3 levels were significantly higher in IPD than the control group (p < 0.001). Serum galectin-3 levels, UPDRS scores, and duration of disease were significantly higher in patients with IPD in parallel with the progression of the disease (p < 0.001; 0.001; 0.009). No significant relationship was detected between the stage of the disease and other parameters (p < 0.05).

      Conclusion

      Our study supports the hypothesis that serum galectin-3 level might be associated with IPD. Our data suggest that serum galectin-3 levels might be an accessible biomarker for the detection and prevention of chronic, progressive diseases such as IPH.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Tiwari P.C.
        • Pal R.
        The potential role of neuroinflammation and transcription factors in Parkinson disease.
        Dialogues Clin Neurosci. 2017; 19: 71-80
        • Kalia L.V.
        • Lang A.E.
        Parkinson's disease.
        Lancet. 2015; 386: 896-912https://doi.org/10.1016/S0140-6736(14)61393-3
        • Markó-Kucsera M.
        • Vécsei L.
        • Paulik E.
        Association of cardiovascular risk factors and Parkinson’s disease- a case- control study in South East Hungary.
        Ideggyogy Sz. 2018; 71: 57-62https://doi.org/10.18071/isz.71.0057
        • Lökk J.
        Caregiver strain in Parkinson’s disease and the impact of disease duration.
        Eur J Phys Rehabil Med. 2008; 44: 39-45
        • Yazar H.O.
        • Yazar T.
        • Demir E.Y.
        • Cankaya S.
        • Enginyurt Ö.
        Assessment of mental health of carers according to patient stage of idiopathic Parkinson's disease.
        Ideggyogy Sz. 2018; 71: 205-212https://doi.org/10.18071/isz.71.0205
        • Brockmann K.
        • Schulte C.
        • Schneiderhan-Marra N.
        • Apel A.
        • Pont-Sunyer C.
        • Vilas D.
        • et al.
        Inflammatory profile discriminates clinical subtypes in LRRK2-associated Parkinson's disease.
        Eur J Neurol. 2017; 24 (427-e6)https://doi.org/10.1111/ene.13223
        • Durcan R.
        • Wiblin L.
        • Lawson R.A.
        • Khoo T.K.
        • Yarnall A.J.
        • Duncan G.W.
        • et al.
        Prevalence and duration of non-motor symptoms in prodromal Parkinson's disease.
        Eur J Neurol. 2019; https://doi.org/10.1111/ene.13919
        • Pitcher T.L.
        • Myall D.J.
        • Pearson J.F.
        • Lacey C.J.
        • Dalrymple-Alford J.C.
        • Anderson T.J.
        • et al.
        Parkinson's disease across ethnicities: a nationwide study in New Zealand.
        Mov Disord. 2018; 33: 1440-1448https://doi.org/10.1002/mds.27389
        • Gökçe Çokal B.
        • Yurtdas M.
        • Keskin Guler S.
        • Gunes H.N.
        • Atac Ucar C.
        • Aytac B.
        • et al.
        Serum glutathione peroxidase, xanthine oxidase, and superoxide dismutase activities and malondialdehyde levels in patients with Parkinson's disease.
        Neurol Sci. 2017; 38: 425-431https://doi.org/10.1007/s10072-016-2782-8
        • Blesa J.
        • Trigo-Damas I.
        • Quiroga-Varela A.
        • Jackson-Lewis V.R.
        Oxidative stress and Parkinson's disease.
        Front Neuroanat. 2015; 9: 91https://doi.org/10.3389/fnana.2015.00091
        • Kaur K.
        • Gill J.S.
        • Bansal P.K.
        • Deshmukh R.
        Neuroinflammation - a major cause for striatal dopaminergic degeneration in Parkinson's disease.
        J Neurol Sci. 2017; 15: 308-314https://doi.org/10.1016/j.jns.2017.08.3251
        • Pankratz N.
        • Foroud T.
        Genetics of parkinson disease.
        NeuroRx. 2004; 1: 235-242https://doi.org/10.1602/neurorx.1.2.235
        • Gallagher D.A.
        • Schapira A.H.
        Etiopathogenesis and treatment of Parkinson’s disease.
        Curr Top Med Chem. 2009; 9: 860-880
        • Rocha E.M.
        • De Miranda B.
        • Sanders L.H.
        Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease.
        Neurobiol Dis. 2018; 109: 249-257https://doi.org/10.1016/j.nbd.2017.04.004
        • Giannoccaro M.P.
        • La Morgia C.
        • Rizzo G.
        • Carelli V.
        Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson's disease.
        Mov Disord. 2017; 32: 346-363https://doi.org/10.1002/mds.26966
        • Jankovic J.
        Pathogenesis-targeted therapeutic strategies in Parkinson's disease.
        Mov Disord. 2019; 34: 41-44https://doi.org/10.1002/mds.27534
        • Appel‐Cresswell S.
        • Vilarino‐Guell C.
        • Encarnacion M.
        • Sherman H.
        • Yu I.
        • Shah B.
        • et al.
        Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease.
        Mov Disord. 2013; 28: 811-813https://doi.org/10.1002/mds.25421
        • Niranjan R.
        Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration.
        Neurochem Int. 2018; 19: 13-20https://doi.org/10.1016/j.neuint.2018.07.003
        • Ma Z.
        • Han Q.
        • Wang X.
        • Ai Z.
        • Zheng Y.
        Galectin-3 inhibition is associated with neuropathic pain attenuation after peripheral nerve injury.
        PLoS ONE. 2016; 11: e0148792https://doi.org/10.1371/journal.pone.0148792
        • Zhu Y.
        • Hu W.
        • Zhu M.L.
        • Yin T.
        • Su J.
        • Wang J.R.
        Serum galectin-3 levels and delirium among postpartum intensive care unit women.
        Brain Behav. 2017; 7: e00773https://doi.org/10.1002/brb3.773
        • Boza-Serrano A.
        • Yang Y.
        • Paulus A.
        • Deierborg T.
        Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer's disease mouse model 5xFAD.
        Sci Rep. 2018; 8: 1550https://doi.org/10.1038/s41598-018-19699-y
        • Ashraf G.M.
        • Baeesa S.S.
        Investigation of Gal-3 expression pattern in serum and cerebrospinal fluid of patients suffering from neurodegenerative disorders.
        Front Neurosci. 2018; 12: 430https://doi.org/10.3389/fnins.2018.00430
        • Ouchi Y.
        • Yoshikawa E.
        • Sekine Y.
        • Futatsubashi M.
        • Kanno T.
        • Ogusu T.
        • et al.
        Microglial activation and dopamine terminal loss in early Parkinson's disease.
        Ann Neurol. 2005; 57: 168-175https://doi.org/10.1002/ana.20338
        • Harms A.S.
        • Cao S.
        • Rowse A.L.
        • Thome A.D.
        • Li X.
        • Mangieri L.R.
        • et al.
        MHCII Is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration.
        J Neurosci. 2013; 33: 9592-9600https://doi.org/10.1523/JNEUROSCI.5610-12.2013
        • Brás I.C.
        • Lopes L.V.
        • Outeiro T.F.
        Sensing α-synuclein from the outside via the prion protein: implications for neurodegeneration.
        Mov Disord. 2018; 33: 1675-1684https://doi.org/10.1002/mds.27478
        • Tripathi M.
        • Dixit A.
        • Chandra P.S.
        Galectin-3, an important yet unexplored molecule in drug resistant epilepsy.
        Neurol India. 2016; 64: 237-238https://doi.org/10.4103/0028-3886.177600
        • Wu Z.S.
        • Lo J.J.
        • Wu S.H.
        • Wang C.Z.
        • Chen R.F.
        • Lee S.S.
        • et al.
        Early hyperbaric oxygen treatment attenuates burn-induced neuroinflammation by inhibiting the galectin-3-dependent toll-like receptor-4 pathway in a rat model.
        Int J Mol Sci. 2018; 19: E2195https://doi.org/10.3390/ijms19082195
        • Shin T.
        The pleiotropic effects of galectin-3 in neuroinflammation: a review.
        Acta Histochem. 2013; 115: 407-411https://doi.org/10.1016/j.acthis.2012.11.010
        • He X.W.
        • Li W.L.
        • Li C.
        • Liu P.
        • Shen Y.G.
        • Zhu M.
        • et al.
        Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic stroke.
        Sci Rep. 2017; 7: 40994https://doi.org/10.1038/srep40994
        • Codolo G.
        • Plotegher N.
        • Pozzobon T.
        • Brucale M.
        • Tessari I.
        • Bubacco L.
        • et al.
        Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies.
        PLoS ONE. 2013; 8: e55375https://doi.org/10.1371/journal.pone.0055375
        • Thomas L.
        • Pasquini L.A.
        Galectin-3-mediated glial crosstalk drives oligodendrocyte differentiation and (Re)myelination.
        Front Cell Neurosci. 2018; 12: 297https://doi.org/10.3389/fncel.2018.00297
        • Litvan I.
        • Bhatia K.P.
        • Burn D.J.
        • Goetz C.G.
        • Lang A.E.
        • McKeith I.
        • et al.
        Movement disorders society scientific issues committee. movement disorders society scientific issues committee report: SIC task force appraisal of clinical diagnostic criteria for Parkinsonian disorders.
        Mov Disord. 2003; 18: 467-486https://doi.org/10.1002/mds.10459
        • Ramaker C.
        • Marinus J.
        • Stiggelbout A.M.
        • Van Hilten B.J.
        Systematic evaluation of rating scales for impairment and disability in Parkinson's disease.
        Mov Disord. 2002; 17: 867-876
        • Hoehn M.M.
        • Yahr M.D.
        Parkinsonism: onset, progression and mortality.
        Neurology. 1967; 17: 427-429
        • Folstein M.F.
        • Folstein S.E.
        • McHugh P.R.
        Mini-mental state.
        J Psychiat Res. 1975; 12: 189-198
        • Jiang H.R.
        • Al Rasebi Z.
        • Mensah-Brown E.
        • Shahin A.
        • Xu D.
        • Goodyear C.S.
        • et al.
        Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis.
        J Immunol. 2009; 182: 1167-1173https://doi.org/10.4049/jimmunol.182.2.1167
        • Pajoohesh-Ganji A.
        • Knoblach S.M.
        • Faden A.I.
        • Byrnes K.R.
        Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice.
        Brain Res. 2012; 1475: 96-105https://doi.org/10.1016/j.brainres.2012.07.058
        • Cheng X.
        • Boza-Serrano A.
        • Turesson M.F.
        • Deierborg T.
        • Ekblad E.
        • Voss U.
        Galectin-3 causes enteric neuronal loss in mice after left sided permanent middle cerebral artery occlusion, a model of stroke.
        Sci Rep. 2016; 6: 32893https://doi.org/10.1038/srep32893
        • Yip P.K.
        • Carrillo-Jimenez A.
        • King P.
        • Vilalta A.
        • Nomura K.
        • Chau C.C.
        • et al.
        Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration.
        Sci Rep. 2017; 7: 41689https://doi.org/10.1038/srep41689
        • Nishikawa H.
        • Suzuki H.
        Possible role of inflammation and galectin-3 in brain injury after subarachnoid hemorrhage.
        Brain Sci. 2018; 8: 30https://doi.org/10.3390/brainsci8020030
        • Venkatraman A.
        • Hardas S.
        • Patel N.
        • Singh Bajaj N.
        • Arora G.
        • Arora P.
        Galectin-3: an emerging biomarker in stroke and cerebrovascular diseases.
        Eur J Neurol. 2018; 25: 238-246https://doi.org/10.1111/ene.13496
        • Arora P.
        • Agarwal Z.
        • Venkatraman A.
        • Callas P.
        • Kissela B.M.
        • Jenny N.S.
        • et al.
        Galectin-3 and risk of ischaemic stroke: reasons for geographic and racial differences in stroke cohort.
        Eur J Neurol. 2017; 24: 1464-1470https://doi.org/10.1111/ene.13440
        • Dong R.
        • Zhang M.
        • Hu Q.
        • Zheng S.
        • Soh A.
        • Zheng Y.
        • et al.
        Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review).
        Int J Mol Med. 2018; 41: 599-614https://doi.org/10.3892/ijmm.2017.3311
        • Sciacchitano S.
        • Lavra L.
        • Morgante A.
        • Ulivieri A.
        • Magi F.
        • De Francesco G.
        • et al.
        Galectin- 3: one molecule for an alphabet of diseases, from A to Z.
        Int J Mol Sci. 2018; 19: E379https://doi.org/10.3390/ijms19020379
        • de Boer R.A.
        • van Veldhuisen D.J.
        • Gansevoort R.T.
        • Muller Kobold A.C.
        • van Gilst W.H.
        • Hillege H.L.
        • et al.
        The fibrosis marker galectin-3 and outcome in the general population.
        J Intern Med. 2012; 272: 55-64https://doi.org/10.1111/j.1365-2796.2011.02476.x
        • Timmerman R.
        • Burm S.M.
        • Bajramovic J.J.
        An overview of in vitro methods to study microglia.
        Front Cell Neurosci. 2018; 12: 242https://doi.org/10.3389/fncel.2018.00242
        • Meeusen J.W.
        • Johnson J.N.
        • Gray A.
        • Wendt P.
        • Jefferies J.L.
        • Jaffe A.S.
        • et al.
        Soluble ST2 and galectin-3 in pediatric patients without heart failure.
        Clin Biochem. 2015; 48: 1337-1440https://doi.org/10.1016/j.clinbiochem.2015.08.007
        • Schindler E.I.
        • Szymanski J.J.
        • Hock K.G.
        • Geltman E.M.
        • Scott M.G.
        Short- and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable heart failure and healthy adults.
        Clin Chem. 2016; 62: 360-366https://doi.org/10.1373/clinchem.2015.246553
        • Issa S.F.
        • Christensen A.F.
        • Lottenburger T.
        • Junker K.
        • Lindegaard H.
        • Hørslev-Petersen K.
        • et al.
        Within-day variation and influence of physical exercise on circulating Galectin-3 in patients with rheumatoid arthritis and healthy individuals.
        Scand J Immunol. 2015; 82: 70-75https://doi.org/10.1111/sji.12301