Advertisement
Clinical study| Volume 62, P53-59, April 2019

Glutamate transporter gene polymorphisms and obsessive-compulsive disorder: A case-control association study

Published:January 17, 2019DOI:https://doi.org/10.1016/j.jocn.2019.01.009

      Highlights

      • We performed an association study of polymorphisms within SLC1A1 gene in a group of OCD patients and healthy controls.
      • The A-A-G (rs301434-rs3780412-rs301443) haplotype was associated with OCD.
      • Hoarding, Neutralization and Checking dimensions were associated with SLC1A1 variations.
      • Our results demonstrated that the SLC1A1 may contribute to some extent the susceptibility to OCD and its symptoms.

      Abstract

      The etiology of obsessive–compulsive disorder (OCD) is largely unknown, but family, twin, neuroimaging, and pharmacological studies suggest that glutamatergic system plays a significant role on its underlying pathophysiology. We performed an association analysis of six Single Nucleotide Polymorphisms (SNPs) within SLC1A1 gene (rs12682807, rs2075627, rs3780412, rs301443, rs301430, rs301434) in a group of 199 patients and 200 healthy controls. Symptom profiles were evaluated using the Florida Obsessive-Compulsive Inventory (FOCI) and the Obsessive-Compulsive Inventory-Revised (OCI-R). SNPs were analyzed by Taqman® methodology (Thermo Fisher, Brazil). The genotype distributions were in Hardy-Weinberg equilibrium. The A-A-G (rs301434-rs3780412-rs301443) haplotype was twice as common in OCD as in controls (P = 0.02). We also found significant differences between male patients and controls for rs301443 in a dominant model (P = 0.04) and a protective effect of GG genotype of rs2072657 in women (P = 0.02). Regarding clinical characteristics, the G-A (rs301434-rs3780412) haplotype was almost twice more common in patients with vs. without hoarding (P = 0.04). Further analyses showed significant associations between hoarding and rs301434 (P = 0.04) and rs3780412 (P = 0.04) in women, both in a dominant model. A dominant effect was also observed on ordering dimension for rs301434 (P = 0.01, in women) and rs301443 (P = 0.04). Finally, the rs2072657 showed a recessive effect on neutralization (P = 0.04) and checking (P = 0.03, in men). These preliminary results demonstrated that the SLC1A1 may contribute to some extent the susceptibility to OCD and its symptoms. However, additional studies are still needed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leckman J.F.
        • Grice D.E.
        • Boardman J.
        • Zhang H.
        • Vitale A.
        • Bondi C.
        • et al.
        Symptoms of obsessive-compulsive disorder.
        Am J Psychiatry. 1997; 154: 911-917
        • Grisham J.R.
        • Anderson T.M.
        • Sachdev P.S.
        Genetic and environmental influences on obsessive-compulsive disorder.
        Eur Arch Psychiatry Clin Neurosci. 2008; 258: 107-116
        • Pauls D.L.
        • Abramovitch A.
        • Rauch S.L.
        • Geller D.A.
        Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective.
        Nat Rev Neurosci. 2014; 15: 410-424
        • Leckman J.F.
        • Goodman W.K.
        • North W.G.
        • Chappell P.B.
        • Price L.H.
        • Pauls D.L.
        • et al.
        The role of central oxytocin in obsessive compulsive disorder and related normal behavior.
        Psychoneuroendocrinology. 1994; 19: 723-749
        • Uguz F.
        • Akman C.
        • Kaya N.
        • Cilli A.S.
        Postpartum-onset obsessive-compulsive disorder: incidence, clinical features, and related factors.
        J Clin Psychiatry. 2007; 68: 132-138
        • O'Neill J.
        • Gorbis E.
        • Feusner J.D.
        • Yip J.C.
        • Chang S.
        • Maidment K.M.
        • et al.
        Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive-compulsive disorder.
        J Psychiatr Res. 2013; 47: 494-504
        • Schilman E.A.
        • Klavir O.
        • Winter C.
        • Sohr R.
        • Joel D.
        The role of the striatum in compulsive behavior in intact and orbitofrontal-cortex-lesioned rats: possible involvement of the serotonergic system.
        Neuropsychopharmacology. 2010; 35: 1026-1039
        • Swedo S.E.
        • Schrag A.
        • Gilbert R.
        • Giovannoni G.
        • Robertson M.M.
        • Metcalfe C.
        • et al.
        Streptococcal infection, Tourette syndrome, and OCD: is there a connection? PANDAS: horse or zebra?.
        Neurology. 2010; 74 (author reply 1398-1399): 1397-1398
        • Kariuki-Nyuthe C.
        • Gomez-Mancilla B.
        • Stein D.J.
        Obsessive compulsive disorder and the glutamatergic system.
        Curr Opin Psychiatry. 2014; 27: 32-37
        • Ting J.T.
        • Feng G.
        Glutamatergic synaptic dysfunction and obsessive-compulsive disorder.
        Curr Chem Genomics. 2008; 2: 62-75
        • Wu K.
        • Hanna G.L.
        • Rosenberg D.R.
        • Arnold P.D.
        The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder.
        Pharmacol Biochem Behav. 2012; 100: 726-735
        • Zhu Y.
        • Fan Q.
        • Han X.
        • Zhang H.
        • Chen J.
        • Wang Z.
        • et al.
        Decreased thalamic glutamate level in unmedicated adult obsessive-compulsive disorder patients detected by proton magnetic resonance spectroscopy.
        J Affect Disord. 2015; 178: 193-200
        • Rosenberg D.R.
        • Hanna G.L.
        Genetic and imaging strategies in obsessive-compulsive disorder: potential implications for treatment development.
        Biol Psychiatry. 2000; 48: 1210-1222
        • Insel T.R.
        • Winslow J.T.
        Neurobiology of obsessive compulsive disorder.
        Psychiatr Clin North Am. 1992; 15: 813-824
        • Gasso P.
        • Ortiz A.E.
        • Mas S.
        • Morer A.
        • Calvo A.
        • Bargallo N.
        • et al.
        Association between genetic variants related to glutamatergic, dopaminergic and neurodevelopment pathways and white matter microstructure in child and adolescent patients with obsessive-compulsive disorder.
        J Affect Disord. 2015; 186: 284-292
        • Hanna G.L.
        • Veenstra-VanderWeele J.
        • Cox N.J.
        • Boehnke M.
        • Himle J.A.
        • Curtis G.C.
        • et al.
        Genome-wide linkage analysis of families with obsessive-compulsive disorder ascertained through pediatric probands.
        Am J Med Genet. 2002; 114: 541-552
        • Willour V.L.
        • Yao Shugart Y.
        • Samuels J.
        • Grados M.
        • Cullen B.
        • Bienvenu 3rd, O.J.
        • et al.
        Replication study supports evidence for linkage to 9p24 in obsessive-compulsive disorder.
        Am J Hum Genet. 2004; 75: 508-513
        • Zike I.D.
        • Chohan M.O.
        • Kopelman J.M.
        • Krasnow E.N.
        • Flicker D.
        • Nautiyal K.M.
        • et al.
        OCD candidate gene SLC1A1/EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.
        Proc Natl Acad Sci U S A. 2017; 114: 5719-5724
        • Dickel D.E.
        • Veenstra-VanderWeele J.
        • Cox N.J.
        • Wu X.
        • Fischer D.J.
        • Van Etten-Lee M.
        • et al.
        Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2006; 63: 778-785
        • Arnold P.D.
        • Sicard T.
        • Burroughs E.
        • Richter M.A.
        • Kennedy J.L.
        Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2006; 63: 769-776
        • Stewart S.E.
        • Fagerness J.A.
        • Platko J.
        • Smoller J.W.
        • Scharf J.M.
        • Illmann C.
        • et al.
        Association of the SLC1A1 glutamate transporter gene and obsessive-compulsive disorder.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144B: 1027-1033
        • Shugart Y.Y.
        • Wang Y.
        • Samuels J.F.
        • Grados M.A.
        • Greenberg B.D.
        • Knowles J.A.
        • et al.
        A family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder in 378 families.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 886-892
        • Samuels J.
        • Wang Y.
        • Riddle M.A.
        • Greenberg B.D.
        • Fyer A.J.
        • McCracken J.T.
        • et al.
        Comprehensive family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156B: 472-477
        • Wendland J.R.
        • Moya P.R.
        • Timpano K.R.
        • Anavitarte A.P.
        • Kruse M.R.
        • Wheaton M.G.
        • et al.
        A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2009; 66: 408-416
        • Wu H.
        • Wang X.
        • Xiao Z.
        • Yu S.
        • Zhu L.
        • Wang D.
        • et al.
        Association between SLC1A1 gene and early-onset OCD in the Han Chinese population: a case-control study.
        J Mol Neurosci. 2013; 50: 353-359
        • Wu H.
        • Wang X.
        • Yu S.
        • Wang D.
        • Chen J.
        • Jiang K.
        • et al.
        Association of the candidate gene SLC1A1 and obsessive-compulsive disorder in Han Chinese population.
        Psychiatry Res. 2013; 209: 737-739
        • Wang Y.
        • Adamczyk A.
        • Shugart Y.Y.
        • Samuels J.F.
        • Grados M.A.
        • Greenberg B.D.
        • et al.
        A screen of SLC1A1 for OCD-related alleles.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153B: 675-679
        • Dallaspezia S.
        • Mazza M.
        • Lorenzi C.
        • Benedetti F.
        • Smeraldi E.
        A single nucleotide polymorphism in SLC1A1 gene is associated with age of onset of obsessive-compulsive disorder.
        Eur Psychiatry. 2014; 29: 301-303
        • Stewart S.E.
        • Mayerfeld C.
        • Arnold P.D.
        • Crane J.R.
        • O'Dushlaine C.
        • Fagerness J.A.
        • et al.
        Meta-analysis of association between obsessive-compulsive disorder and the 3' region of neuronal glutamate transporter gene SLC1A1.
        Am J Med Genet B Neuropsychiatr Genet. 2013; 162B: 367-379
        • Mattheisen M.
        • Samuels J.F.
        • Wang Y.
        • Greenberg B.D.
        • Fyer A.J.
        • McCracken J.T.
        • et al.
        Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS.
        Mol Psychiatry. 2015; 20: 337-344
        • Stewart S.E.
        • Yu D.
        • Scharf J.M.
        • Neale B.M.
        • Fagerness J.A.
        • Mathews C.A.
        • et al.
        Genome-wide association study of obsessive-compulsive disorder.
        Mol Psychiatry. 2013; 18: 788-798
        • den Braber A.
        • Zilhao N.R.
        • Fedko I.O.
        • Hottenga J.J.
        • Pool R.
        • Smit D.J.
        • et al.
        Obsessive-compulsive symptoms in a large population-based twin-family sample are predicted by clinically based polygenic scores and by genome-wide SNPs.
        Transl Psychiatry. 2016; 6 (e731)
        • Melo-Felippe F.B.
        • de Salles Andrade J.B.
        • Giori I.G.
        • Vieira-Fonseca T.
        • Fontenelle L.F.
        • Kohlrausch F.B.
        Catechol-O-methyltransferase gene polymorphisms in specific obsessive-compulsive disorder patients' subgroups.
        J Mol Neurosci. 2016; 58: 129-136
      1. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders 4th; 2000.

        • Amorim P.
        Mini International Neuropsychiatric Interview (MINI): validation of a short structured diagnostic psychiatric interview.
        Rev Bras Psiquiatr. 2000; 22: 106-115
        • Souza F.P.
        • Foa E.B.
        • Meyer E.
        • Niederauer K.G.
        • Raffin A.L.
        • Cordioli A.V.
        Obsessive-compulsive inventory and obsessive-compulsive inventory-revised scales: translation into brazilian portuguese and cross-cultural adaptation.
        Rev Bras Psiquiatr. 2008; 30: 42-46
        • Kohlrausch F.B.
        • Giori I.G.
        • Melo-Felippe F.B.
        • Vieira-Fonseca T.
        • Velarde L.G.
        • de Salles Andrade J.B.
        • et al.
        Association of GRIN2B gene polymorphism and Obsessive Compulsive disorder and symptom dimensions: a pilot study.
        Psychiatry Res. 2016; 243: 152-155
        • Gomes C.K.F.
        • Vieira-Fonseca T.
        • Melo-Felippe F.B.
        • de Salles Andrade J.B.
        • Fontenelle L.F.
        • Kohlrausch F.B.
        Association analysis of SLC6A4 and HTR2A genes with obsessive-compulsive disorder: influence of the STin2 polymorphism.
        Compr Psychiatry. 2018; 82: 1-6
        • Melo-Felippe F.B.
        • Fontenelle L.F.
        • Kohlrausch F.B.
        Gene variations in PBX1, LMX1A and SLITRK1 are associated with obsessive-compulsive disorder and its clinical features.
        J Clin Neurosci. 2018;
        • Storch E.A.
        • Kaufman D.A.
        • Bagner D.
        • Merlo L.J.
        • Shapira N.A.
        • Geffken G.R.
        • et al.
        Florida Obsessive-Compulsive Inventory: development, reliability, and validity.
        J Clin Psychol. 2007; 63: 851-859
        • Spotts J.
        Utility of the Modified Mini Screen (MMS) for Screening Mental Health Disorders in a Prison Population.
        University of Iowa, 2008
        • Aidar M.
        • Line S.R.
        A simple and cost-effective protocol for DNA isolation from buccal epithelial cells.
        Braz Dent J. 2007; 18: 148-152
        • Barrett J.C.
        • Fry B.
        • Maller J.
        • Daly M.J.
        Haploview: analysis and visualization of LD and haplotype maps.
        Bioinformatics. 2005; 21: 263-265
        • Abramowitz J.S.
        • Deacon B.J.
        Psychometric properties and construct validity of the Obsessive-Compulsive Inventory – revised: Replication and extension with a clinical sample.
        J Anxiety Disord. 2006; 20: 1016-1035
        • Nieoullon A.
        • Canolle B.
        • Masmejean F.
        • Guillet B.
        • Pisano P.
        • Lortet S.
        The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse?.
        J Neurochem. 2006; 98: 1007-1018
        • Kanai Y.
        • Hediger M.A.
        The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects.
        Pflugers Arch. 2004; 447: 469-479
        • Broer S.
        • Brookes N.
        Transfer of glutamine between astrocytes and neurons.
        J Neurochem. 2001; 77: 705-719
        • Danbolt N.C.
        Glutamate uptake.
        Prog Neurobiol. 2001; 65: 1-105
        • Stamm S.
        • Ben-Ari S.
        • Rafalska I.
        • Tang Y.
        • Zhang Z.
        • Toiber D.
        • et al.
        Function of alternative splicing.
        Gene. 2005; 344: 1-20
        • Porton B.
        • Greenberg B.D.
        • Askland K.
        • Serra L.M.
        • Gesmonde J.
        • Rudnick G.
        • et al.
        Isoforms of the neuronal glutamate transporter gene, SLC1A1/EAAC1, negatively modulate glutamate uptake: relevance to obsessive-compulsive disorder.
        Transl Psychiatry. 2013; 3 (e259)
        • Amaral P.P.
        • Dinger M.E.
        • Mercer T.R.
        • Mattick J.S.
        The eukaryotic genome as an RNA machine.
        Science. 2008; 319: 1787-1789
        • Jacquier A.
        The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs.
        Nat Rev Genet. 2009; 10: 833-844
      2. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry 2017.

        • Greene C.S.
        • Penrod N.M.
        • Williams S.M.
        • Moore J.H.
        Failure to replicate a genetic association may provide important clues about genetic architecture.
        PLoS ONE. 2009; 4 (e5639)
        • Kwon S.K.
        • Woo J.
        • Kim S.Y.
        • Kim H.
        • Kim E.
        Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation.
        J Biol Chem. 2010; 285: 13966-13978
        • Carlborg O.
        • Haley C.S.
        Epistasis: too often neglected in complex trait studies?.
        Nat Rev Genet. 2004; 5: 618-625