Advertisement
Review article| Volume 62, P1-6, April 2019

Fishing for Parkinson’s Disease: A review of the literature

Published:January 16, 2019DOI:https://doi.org/10.1016/j.jocn.2019.01.015

      Highlights

      • Zebrafish is a promising model of the future in Parkinson’s Disease.
      • Transparency, suitability for genetic and drug screening are advantages of zebrafish.
      • Parkinson’s Disease can be induced in zebrafish by neurotoxins and by gene editing.

      Abstract

      Parkinson’s disease (PD), the second most common neurodegenerative disorder in the world, is due to the damage or death of cells that produce dopamine in the region called the substantia nigra (SN). Model organisms are important tools in PD research. Zebrafish (Danio rerio), a small tropical freshwater fish, entered the scientific world through developmental biology studies and today has become a popular model organism for human diseases. This review will provide information on the current knowledge about the use of zebrafish in PD research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Lau L.M.
        • Breteler M.M.
        Epidemiology of Parkinson’s disease.
        Lancet Neurol. 2006; 5: 525-535
        • Streisinger G.
        • Walker C.
        • Dower N.
        • Knauber D.
        • Singer F.
        Production of clones of homozygous diploid zebra fish (Brachydanio rerio).
        Nature. 1981; 291: 293-296
        • Makhija D.T.
        • Jagtap A.G.
        Studies on sensitivity of zebrafish as a model organism for Parkinson's disease: comparison with rat model.
        J Pharmacol Pharmacother. 2014; 5: 39-46
        • Holzschuh J.
        • Ryu S.
        • Aberger F.
        • Driever W.
        Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo.
        Mech Dev. 2001; 101: 237-243
        • Rink E.
        • Wullimann M.F.
        Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost.
        Brain Res Bull. 2002; 57: 385-387
        • Son O.L.
        • Kim H.T.
        • Ji M.H.
        • Yoo K.W.
        • Rhee M.
        • Kim C.H.
        Cloning and expression analysis of a Parkinson’s disease gene, uch-L1, and its promoter in zebrafish.
        Biochem Biophys Res Commun. 2003; 312: 601-607
        • Jeong J.Y.
        • Kwon H.B.
        • Ahn J.C.
        • Kang D.
        • Kwon S.H.
        • Park J.A.
        • et al.
        Functional and developmental analysis of the blood–brain barrier in zebrafish.
        Brain Res Bull. 2008; 75: 619-628
        • Ton C.
        • Lin Y.
        • Willett C.
        Zebrafish as a model for developmental neurotoxicity testing.
        Birth Defects Res A Clin Mol Teratol. 2006; 76: 553-567
        • Milanese C.
        • Sager J.J.
        • Bai Q.
        • Farrell T.C.
        • Cannon J.R.
        • Greenamyre J.T.
        • et al.
        Hypokinesia and reduced dopamine levels in zebrafish lacking β- and γ1-synucleins.
        J Biol Chem. 2012; 287: 2971-2983
        • Curtius H.C.
        • Wolfensberger M.
        • Steinmann B.
        • Redweik U.
        • Siegfried J.
        Mass fragmentography of dopamine and 6-hydroxydopamine. Application to the determination of dopamine in human brain biopsies from the caudate nucleus.
        J Chromatogr. 1974; 99: 529-540
        • Andrew R.
        • Watson D.G.
        • Best S.A.
        • Midgley J.M.
        • Wenlong H.
        • Petty R.K.
        The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls.
        Neurochem Res. 1993; 18: 1175-1177
        • Blesa J.
        • Przedborski S.
        Parkinson’s disease: animal models and dopaminergic cell vulnerability.
        Front Neuroanat. 2014; 8: 155
        • Tieu K.
        A guide to neurotoxic animal models of Parkinson’s disease.
        Cold Spring Harb Perspect Med. 2011; 1a009316
        • Hisahara S.
        • Shimohama S.
        Toxin-induced and genetic animal models of Parkinson's disease.
        Parkinsons Dis. 2011;2011.;
        • Blesa J.
        • Trigo‐Damas I.
        • Quiroga‐Varela A.
        • Lopez-Gonzalez del Rey N.
        Animal Models of Parkinson’s Disease.
        in: Dorszewska J. Challenges in Parkinson's Disease. IntechOpen, London2016: 195-214
        • Park H.J.
        • Zhao T.T.
        • Lee M.K.
        Animal models of Parkinson’s disease and their applications.
        J Parkinsonism Restless Legs Syndrome. 2016; 6: 73-82
        • Feng C.W.
        • Wen Z.H.
        • Huang S.Y.
        • Hung H.C.
        • Chen C.H.
        • Yang S.N.
        • et al.
        Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae.
        Zebrafish. 2014; 11: 227-239
        • Vijayanathan Y.
        • Lim F.T.
        • Lim S.M.
        • Long C.M.
        • Tan M.P.
        • Majeed A.B.A.
        • et al.
        6-OHDA-Lesioned Adult Zebrafish as a Useful Parkinson’s Disease Model for Dopaminergic Neuroregeneration.
        Neurotox Res. 2017; 32: 496-508
        • Li M.
        • Zhou F.
        • Xu T.
        • Song H.
        • Lu B.
        Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway.
        Food Chem Toxicol. 2018; 119: 6-13
        • Cronin A.
        • Grealy M.
        Neuroprotective and Neurorestorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson’s Disease.
        Neuroscience. 2017; 367: 34-46
        • Matsui H.
        • Sugie A.
        An optimized method for counting dopaminergic neurons in zebrafish.
        PLoS One. 2017; 12e0184363
        • Blesa J.
        • Phani S.
        • Jackson-Lewis V.
        • Przedborski S.
        Classic and new animal models of Parkinson’s disease.
        J Biomed Biotechnol. 2012; 2012
        • McKinley E.T.
        • Baranowski T.C.
        • Blavo D.O.
        • Cato C.
        • Doan T.N.
        • Rubinstein A.L.
        Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons.
        Brain Res Mol Brain Res. 2005; 141: 128-137
        • Bove J.
        • Perier C.
        Neurotoxin-based models of Parkinson’s disease.
        Neuroscience. 2012; 211: 51-76
        • Bohlen Von
        • Halbach O.
        Animal models of Parkinson’s disease.
        Neurodegenerative Dis. 2005; 2: 313-320
        • Babu S.N.
        • Murthy C.L.N.
        • Kakara S.
        • Sharma R.
        • Brahmendra Swamy C.V.
        • Idris M.M.
        1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease in zebrafish.
        Proteomics. 2016; 16: 1407-1420
        • Anichtchik O.V.
        • Kaslin J.
        • Peitsaro N.
        • Scheinin M.
        • Panula P.
        Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
        J Neurochem. 2004; 88: 443-453
        • Lam C.S.
        • Korzh V.
        • Strahle U.
        Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP.
        Eur J Neurosci. 2005; 21: 1758-1762
        • Díaz-Casado M.E.
        • Lima E.
        • García J.A.
        • Doerrier C.
        • Aranda P.
        • Sayed R.K.
        • et al.
        Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK 1/DJ-1/MUL 1 network.
        J Pineal Res. 2016; 61: 96-107
        • Sallinen V.
        • Kolehmainen J.
        • Priyadarshini M.
        • Toleikyte G.
        • Chen Y.C.
        • Panula P.
        Dopaminergic cell damage and vulnerability to MPTP in Pink1 knockdown zebrafish.
        Neurobiol Dis. 2010; 40: 93-101
        • Wen L.
        • Wei W.
        • Gu W.
        • Huang P.
        • Ren X.
        • Zhang Z.
        • et al.
        Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish.
        Dev Biol. 2008; 314: 84-92
        • Lu X.L.
        • Lin Y.H.
        • Wu Q.
        • Su F.J.
        • Ye C.H.
        • Shi L.
        • et al.
        Paeonolum protects against MPP+-induced neurotoxicity in zebrafish and PC12 cells.
        BMC Complement Altern Med. 2015; 15: 137
        • Zhang X.F.
        • Thompson M.
        • Xu Y.H.
        Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson’s disease.
        Lab Invest. 2016; 96: 496-507
        • Franco R.
        • Sánchez-Olea R.
        • Reyes-Reyes E.M.
        • Panayiotidis M.I.
        Environmental toxicity, oxidative stress and apoptosis: menage a trois.
        Mutat Res Genet Toxicol Environ Mutagen. 2009; 674: 3-22
        • Thiruchelvam M.
        • Brockel B.J.
        • Richfield E.K.
        • Baggs R.B.
        • Cory-Slechta D.A.
        Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease?.
        Brain Res. 2000; 873: 225-234
        • Gubellini P.
        • Kachidian P.
        Animal models of Parkinson's disease: An updated overview.
        Rev Neurol (Paris). 2015; 171: 750-761
        • Nandipati S.
        • Litvan I.
        Environmental exposures and Parkinson’s disease.
        Int J Environ Res Public Health. 2016; 13: 881
        • Bortolotto J.W.
        • Cognato G.P.
        • Christoff R.R.
        • Roesler L.N.
        • Leite C.E.
        • Kist L.W.
        • et al.
        Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio).
        Zebrafish. 2014; 11: 142-153
        • Nellore J.
        • Nandita P.
        Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis.
        Toxicol Rep. 2015; 2: 950-956
        • Bové J.
        • Prou D.
        • Perier C.
        • Przedborski S.
        Toxin-induced models of Parkinson's disease.
        NeuroRx. 2005; 2: 484-494
        • Xiong N.
        • Long X.
        • Xiong J.
        • Jia M.
        • Chen C.
        • Huang J.
        • et al.
        Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models.
        Crit Rev Toxicol. 2012; 42: 613-632
        • Bretaud S.
        • Lee S.
        • Guo S.
        Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease.
        Neurotoxicol Teratol. 2004; 26: 857-864
        • Franco R.
        • Li S.
        • Rodriguez-Rocha H.
        • Burns M.
        • Panayiotidis M.I.
        Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson's disease.
        Chem Biol Interact. 2010; 188: 289-300
        • Wang Y.
        • Liu W.
        • Yang J.
        • Wang F.
        • Sima Y.
        • Zhong Z.M.
        • et al.
        Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish.
        Neurotoxicology. 2017; 58: 103-109
        • Martel S.
        • Keow J.Y.
        • Ekker M.
        Rotenone Neurotoxicity Causes Dopamine Neuron Loss in Zebrafish.
        Univ Ottawa J Med. 2015; 5: 16-21
        • Doğanli C.
        • Oxvig C.
        • Lykke-Hartmann K.
        Zebrafish as a novel model to assess Na+/K+-ATPase-related neurological disorders.
        Neurosci Biobehav Rev. 2013; 37: 2774-2787
        • Bandmann O.
        • Burton E.A.
        Genetic zebrafish models of neurodegenerative diseases.
        Neurobiol Dis. 2010; 40: 58-65
        • Heasman J.
        Morpholino oligos: making sense of antisense?.
        Dev Biol. 2002; 243: 209-214
        • Robu M.E.
        • Larson J.D.
        • Nasevicius A.
        • Beiraghi S.
        • Brenner C.
        • Farber S.A.
        • et al.
        p53 activation by knockdown technologies.
        PLoS Genet. 2007; 3e78
        • Stemple D.L.
        TILLING-a high-throughput harvest for functional genomics.
        Nat Rev Genet. 2004; 5: 145-150
        • Miller J.C.
        • Holmes M.C.
        • Wang J.
        • Guschin D.Y.
        • Lee Y.L.
        • Rupniewski I.
        • et al.
        An improved zinc-finger nuclease architecture for highly specific genome editing.
        Nat biotechnol. 2007; 25: 778-785
        • Foley J.E.
        • Yeh J.R.J.
        • Maeder M.L.
        • Reyon D.
        • Sander J.D.
        • Peterson R.T.
        • et al.
        Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN).
        PLoS ONE. 2009; 4e4348
        • Akbudak M.A.
        • Kontbay K.
        Yeni Nesil Genom Düzenleme Teknikleri: ZFN, TALEN, CRISPR’lar ve Bitkilerde Kullanımı.
        Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi. 2017; 26: 111-126
        • Osakabe Y.
        • Osakabe K.
        Genome editing with engineered nucleases in plants.
        Plant Cell Physiol. 2014; 56: 389-400
        • Joung J.K.
        • Sanderb J.D.
        TALENs: a widely applicable technology for targeted genome editing.
        Nat Rev Mol Cell Biol. 2013; 14: 49-55
        • Clasen B.M.
        • Stoddard T.J.
        • Luo S.
        • Demorest Z.L.
        • Li J.
        • Cedrone F.
        • et al.
        Improving cold storage and processing traits in potato through targeted gene knockout.
        Plant Biotechnol J. 2016; 14: 169-176
        • Irion U.
        • Krauss J.
        • Nüsslein-Volhard C.
        Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system.
        Development. 2014; 141: 4827-4830
        • Godoy R.
        • Noble S.
        • Yoon K.
        • Anisman H.
        • Ekker M.
        Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae.
        J Neuroche. 2015; 135: 249-260
        • Whitworth A.J.
        • Theodore D.A.
        • Greene J.C.
        • Benes H.
        • Wes P.D.
        • Pallanck L.J.
        Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease.
        Proc Natl Acad Sci USA. 2005; 102: 8024-8029
        • Xi Y.
        • Noble S.
        • Ekker M.
        Modeling neurodegeneration in zebrafish.
        Curr Neurol Neurosci Rep. 2011; 11: 274-282
        • Flinn L.
        • Mortiboys H.
        • Volkmann K.
        • Köster R.W.
        • Ingham P.W.
        • Bandmann O.
        Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio).
        Brain. 2009; 132: 1613-1623
        • Mortiboys H.
        • Thomas K.J.
        • Koopman W.J.H.
        • Klaffke S.
        • Abou-Sleiman P.
        • Olpin S.
        • et al.
        Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts.
        Ann Neurol. 2008; 64: 555-565
        • Gandhi S.
        • Muqit M.M.
        • Stanyer L.
        • Healy D.G.
        • Abou-Sleiman P.M.
        • Hargreaves I.
        • et al.
        PINK1 protein in normal human brain and Parkinson’s disease.
        Brain. 2006; 129: 1720-1731
        • Anichtchik O.
        • Diekmann H.
        • Fleming A.
        • Roach A.
        • Goldsmith P.
        • Rubinsztein D.C.
        Loss of PINK1 function affects development and results in neurodegeneration in zebrafish.
        J Neurosci. 2008; 28: 8199-8207
        • Flinn L.J.
        • Keatinge M.
        • Bretaud S.
        • Mortiboys H.
        • Matsui H.
        • De Felice E.
        • et al.
        TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency.
        Ann Neurol. 2013; 74: 837-847
        • Xi Y.
        • Ryan J.
        • Noble S.
        • Yu M.
        • Yilbas A.E.
        • Ekker M.
        Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function.
        Eur J Neurosci. 2010; 31: 623-633
        • Bai Q.
        • Mullett S.J.
        • Garver J.A.
        • Hinkle D.A.
        • Burton E.A.
        Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons.
        Brain Res. 2006; 1113: 33-44
        • Bretaud S.
        • Allen C.
        • Ingham P.W.
        • Bandmann O.
        p53 dependent neuronal cell death in a DJ-1 deficient zebrafish model of Parkinson's disease.
        J Neurochem. 2007; 100: 1626-1635
        • Jagmag S.A.
        • Tripathi N.
        • Shukla S.D.
        • Maiti S.
        • Khurana S.
        Evaluation of models of Parkinson's disease.
        Front Neurosci. 2016; 9: 503