Advertisement
Review article| Volume 62, P14-20, April 2019

Virtual reality and augmented reality in the management of intracranial tumors: A review

  • Chester Lee
    Affiliations
    Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
    Search for articles by this author
  • George Kwok Chu Wong
    Correspondence
    Corresponding author at: 4/F Lui Che Wo Clinical Sciences Building, Department of Surgery, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong Special Administrative Region.
    Affiliations
    Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
    Search for articles by this author
Published:January 11, 2019DOI:https://doi.org/10.1016/j.jocn.2018.12.036

      Highlights

      • Virtual and augmented reality can offer benefits for surgical planning, navigation and training.
      • NeuroPlanner is a 2D/3D atlas of the human brain useful for surgical planning.
      • Intra-operative Brain Imaging System platform can help surgical navigation.
      • NeuroTouch and ImmersiveTouch have been introduced for surgical training.

      Abstract

      Neurosurgeons are faced with the challenge of planning, performing, and learning complex surgical procedures. With improvements in computational power and advances in visual and haptic display technologies, augmented and virtual surgical environments can offer potential benefits for tests in a safe and simulated setting, as well as improve management of real-life procedures. This systematic literature review is conducted in order to investigate the roles of such advanced computing technology in neurosurgery subspecialization of intracranial tumor removal. The study would focus on an in-depth discussion on the role of virtual reality and augmented reality in the management of intracranial tumors: the current status, foreseeable challenges, and future developments.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roberts D.W.
        • Strohbehn J.W.
        • Hatch J.F.
        • Murray W.
        • Kettenberger H.
        A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.
        J Neurosurg. 1986; 65: 545-549
        • Gleason P.
        • Kikinis R.
        • Wells W.
        • Lorensen W.
        • Cline H.
        • Enhanced Ettinger G
        • et al.
        Reality for neurosurgical guidance.
        AAAI Tech Rep. 1994; : 239-242
        • Gildenberg P.L.
        • Ledoux R.
        • Cosman E.
        • Labuz J.
        The Exoscope – a frame-based video/graphics system for intraoperative guidance of surgical resection.
        Stereotact Funct Neurosurg. 1994; 63: 23-25
        • Edwards P.J.
        • Hawkes D.J.
        • Hill D.L.G.
        • Jewell D.
        • Spink R.
        • Strong A.
        • et al.
        Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance.
        J Image Guid Surg. 1995; 1: 172-178
        • Masutani Y.
        • Dohi T.
        • Yamane F.
        • Iseki H.
        • Takakura K.
        Augmented reality visualization system for intravascular neurosurgery.
        Comput Aided Surg. 1998; 3: 239-247
        • Kawamata T.
        • Iseki H.
        • Shibasaki T.
        • Hori T.
        Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumore: technical note.
        Neurosurgery. 2002; 50: 1393-1397
        • Guha D.
        • Alotaibi N.M.
        • Nguyen N.
        • Gupta S.
        • McFaul C.
        • Yang V.X.D.
        Augmented reality in neurosurgery: a review of current concepts and emerging applications.
        Can J Neurol Sci. 2017; 44: 235-245
        • Nowinski W.
        Virtual reality in brain intervention.
        Int J Artif Intell Tools. 2006; 15: 741-752
        • Pandya A.
        • Auner G.
        Simultaneous augmented and virtual reality for surgical navigation.
        Annu Conf North Am Fuzzy Inf Process Soc – NAFIPS. 2005; 2005: 429-435
        • Pelargos P.E.
        • Nagasawa D.T.
        • Lagman C.
        • Tenn S.
        • Demos J.V.
        • Lee S.J.
        • et al.
        Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.
        J Clin Neurosci. 2017; 35: 1-4
        • Chan S.
        • Conti F.
        • Salisbury K.
        • Blevins N.H.
        Virtual reality simulation in neurosurgery: technologies and evolution.
        Neurosurgery. 2013; 72: 154-164
        • Spicer M.A.
        • Apuzzo M.L.J.
        • Kelly P.J.
        • Benzel E.C.
        • Adler J.R.
        Virtual reality surgery: neurosurgery and the contemporary landscape.
        Neurosurgery. 2003; 52: 489-497
        • Spicer M.A.
        • Van Velsen M.
        • Caffrey J.P.
        • Apuzzo M.L.J.
        • Kelly P.J.
        • Black P.M.L.
        • et al.
        Virtual reality neurosurgery: a simulator blueprint.
        Neurosurgery. 2004; 54: 783-798
        • Chen R.E.
        • Kim E.J.
        • Akinduro O.O.
        • Yoon J.W.
        • Kerezoudis P.
        • Han P.K.
        • et al.
        Augmented reality for the surgeon: systematic review.
        Int J Med Robot Comput Assissted Surg. 2018; 14: 1-13
        • Alaraj A.
        • Lemole M.G.
        • Finkle J.H.
        • Yudkowsky R.
        • Wallace A.
        • Luciano C.
        • et al.
        Virtual reality training in neurosurgery: review of current status and future applications.
        Surg Neurol Int. 2011; 2: 52
        • Bernardo A.
        Virtual reality and simulation in neurosurgical training.
        World Neurosurg. 2017; 106: 1015-1029
        • Kin T.
        • Nakatomi H.
        • Shono N.
        • Nomura S.
        • Saito T.
        • Oyama H.
        • et al.
        Neurosurgical virtual reality simulation for brain tumor using high-definition computer graphics: a review of the literature.
        Neurol Med Chir (Tokyo). 2017; 57: 513-520
        • Dakson A.
        • Hong M.
        • Clarke D.B.
        Virtual reality surgical simulation: implications for resection of intracranial gliomas.
        Prog Neurol Surg. 2017; 30: 106-116
        • Tagaytayan R.
        • Kelemen A.
        • Sik-Lanyi C.
        Augmented reality in neurosurgery.
        Arch Med Sci. 2018; 14: 572-578
        • Yc Goha K.
        Virtual reality applications in neurosurgery.
        Conf Proc IEEE Eng Med Biol Soc. 2005; 4: 4171-4173
        • Meola A.
        • Cutolo F.
        • Carbone M.
        • Cagnazzo F.
        • Ferrari M.
        • Ferrari V.
        Augmented reality in neurosurgery: a systematic review.
        Neurosurg Rev. 2017; 40: 537-548
        • Hutton B.
        • Salanti G.
        • Caldwell D.M.
        • Chaimani A.
        • Schmid C.H.
        • Cameron C.
        • et al.
        The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations.
        Ann Intern Med. 2015; 162: 777
        • Black P.M.L.
        Hormones, radiosurgery and virtual reality: New aspects of meningioma management.
        Can J Neurol Sci. 1997; 24: 302-306
        • Nowinski W.L.
        • Yang Guo Liang
        • Yeo Tseng Tsai
        Computer-aided stereotactic functional neurosurgery enhanced by the use of the multiple brain atlas database.
        IEEE Trans Med Imaging. 2000; 19: 62-69
      1. Yang GL, Guo HH, Huang S, Padmanabhan R, Nowinski WL. NeuroBase: a brain atlas-based, multi-platform, multi-dataset-processing neuroimaging system. In: Mun SK (ed). 2000, pp 77–88.

        • Collins V.P.
        • Loeffler R.K.
        • Tivey H.
        Observations on growth rates of human tumors.
        Am J Roentgenol Radium Ther Nucl Med. 1956; 76: 988-1000
        • Murray J.D.
        Mathematical biology: I. An introduction, third edition.
        3rd ed. Springer, 2000 (http://www.ift.unesp.br/users/mmenezes/mathbio.pdf)
        • Giese A.
        • Kluwe L.
        • Laube B.
        • Meissner H.
        • Berens M.E.
        • Westphal M.
        Migration of human glioma cells on myelin.
        Neurosurgery. 1996; 38: 755-764
        • Swanson K.R.
        • Alvord Jr, E.C.
        • Murray J.D.
        Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current.
        Br J Cancer. 2002; : 14-18
        • Swanson K.R.
        • Bridge C.
        • Murray J.D.
        • Alvord E.C.
        Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion.
        J Neurol Sci. 2003; 216: 1-10
        • Aschke M.
        • Wirtz C.R.
        • Raczkowsky J.
        • Wörn H.
        • Kunze S.
        Augmented reality in operating microscopes for neurosurgical interventions.
        Int IEEE/EMBS Conf Neural Eng NER. 2003; 2003–Janua: 652-655
        • Drouin S.
        • Kochanowska A.
        • Kersten-Oertel M.
        • Gerard I.J.
        • Zelmann R.
        • De Nigris D.
        • et al.
        IBIS: an OR ready open-source platform for image-guided neurosurgery.
        Int J Comput Assist Radiol Surg. 2017; 12: 363-378
        • Schwab B.
        • Hungness E.
        • Barsness K.
        • McGaghie W.
        The role of simulation in surgical training.
        J Laparosc Adv Surg Tech. 2017; 27: 169-172
        • Cobb M.I.P.H.
        • Taekman J.M.
        • Zomorodi A.R.
        • Gonzalez L.F.
        • Turner D.A.
        Simulation in neurosurgery—A brief review and commentary.
        World Neurosurg. 2016; 89: 583-586
        • McGuiness L.
        • Rai B.
        Robotics in urology.
        Robot Ann R Coll Surg Engl. 2016; 117: 38-44
        • Ciporen J.
        • Gillham H.
        • Noles M.
        • Dillman D.
        • Baskerville M.
        • Haley C.
        • et al.
        Crisis management simulation: establishing a dual neurosurgery and anesthesia training experience.
        J Neurosurg Anesthesiol. 2018; 30: 65-70
        • Finnerty B.M.
        • Afaneh C.
        • Aronova A.
        • Fahey T.J.
        • Zarnegar R.
        General surgery training and robotics: are residents improving their skills?.
        Surg Endosc Other Interv Tech. 2016; 30: 567-573
        • Delorme S.
        • Laroche D.
        • Diraddo R.
        • Del Maestro R.F.
        NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training.
        Neurosurgery. 2012; 71: 32-42
        • Gélinas-Phaneuf N.
        • Choudhury N.
        • Al-Habib A.R.
        • Cabral A.
        • Nadeau E.
        • Mora V.
        • et al.
        Assessing performance in brain tumor resection using a novel virtual reality simulator.
        Int J Comput Assist Radiol Surg. 2014; 9: 1-9
        • Choudhury N.
        • Gélinas-Phaneuf N.
        • Delorme S.
        • Del Maestro R.
        Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills.
        World Neurosurg. 2013; 80: 9-19
        • Alzhrani G.
        • Alotaibi F.
        • Azarnoush H.
        • Winkler-Schwartz A.
        • Sabbagh A.
        • Bajunaid K.
        • et al.
        Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator neurotouch.
        J Surg Educ. 2015; 72: 685-696
        • Azarnoush H.
        • Alzhrani G.
        • Winkler-Schwartz A.
        • Alotaibi F.
        • Gelinas-Phaneuf N.
        • Pazos V.
        • et al.
        Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection.
        Int J Comput Assist Radiol Surg. 2015; 10: 603-618
        • Clarke D.B.
        • D’Arcy R.C.N.
        • Delorme S.
        • Laroche D.
        • Godin G.
        • Hajra S.G.
        • et al.
        Virtual reality simulator: demonstrated use in neurosurgical oncology.
        Surg Innov. 2013; 20: 190-197
        • Ryu H.A.
        • Chan S.
        • Sutherland G.R.
        Supplementary educational models in Canadian neurosurgery residency programs.
        Can J Neurol Sci. 2018; 44: 177-183
        • Winkler-Schwartz A.
        • Bajunaid K.
        • Mullah M.A.S.
        • Marwa I.
        • Alotaibi F.E.
        • Fares J.
        • et al.
        Bimanual psychomotor performance in neurosurgical resident applicants assessed using NeuroTouch, a virtual reality simulator.
        J Surg Educ. 2016; 73: 942-953
        • Varshney R.
        • Frenkiel S.
        • Nguyen L.H.P.
        • Young M.
        • Del Maestro R.
        • Zeitouni A.
        • et al.
        Development of the McGill simulator for endoscopic sinus surgery: a new high-fidelity virtual reality simulator for endoscopic sinus surgery.
        Am J Rhinol Allergy. 2014; 28: 330-334
        • Varshney R.
        • Frenkiel S.
        • Nguyen L.H.P.
        • Young M.
        • Del Maestro R.
        • Zeitouni A.
        • et al.
        The McGill simulator for endoscopic sinus surgery (MSESS): a validation study.
        J Otolaryngol Head Neck Surg. 2014; 43: 40
        • Dharmawardana N.
        • Ruthenbeck G.
        • Woods C.
        • Elmiyeh B.
        • Diment L.
        • Ooi E.
        • et al.
        Validation of virtual reality based simulations for endoscopic sinus surgery.
        Clin Otolaryngol. 2015; 40: 569-579
        • Gasco J.
        • Patel A.
        • Luciano C.
        • Holbrook T.
        • Ortega-Barnett J.
        • Kuo Y.-F.
        • et al.
        A novel virtual reality simulation for hemostasis in a brain surgical cavity: perceived utility for visuomotor skills in current and aspiring neurosurgery residents.
        World Neurosurg. 2013; 80: 732-737
        • Kockro R.A.
        • Serra L.
        • Tseng-Tsai Y.
        • Chan C.
        • Yih-Yian S.
        • Gim-Guan C.
        • et al.
        Planning and simulation of neurosurgery in a virtual reality environment.
        Neurosurgery. 2000; : 118-137
        • Wong G.K.C.
        • Zhu C.X.L.
        • Ahuja A.T.
        • Poon W.S.
        Stereoscopic virtual reality simulation for microsurgical excision of cerebral arteriovenous malformation: case illustrations.
        Surg Neurol. 2009; 72: 69-72
        • Wong G.
        • Zhu C.
        • Ahuja A.
        • Poon W.
        Craniotomy and clipping of intracranial aneurysm in a stereoscopic virtual reality environment.
        Neurosurgery. 2007; 61: 564-569
        • Davis M.C.
        • Can D.D.
        • Pindrik J.
        • Rocque B.G.
        • Johnston J.M.
        Virtual interactive presence in global surgical education: international collaboration through augmented reality.
        World Neurosurg. 2016; 86: 103-111
        • Azarnoush H.
        • Siar S.
        • Sawaya R.
        • Al Zhrani G
        • Winkler-Schwartz A.
        • Alotaibi F.E.
        • et al.
        The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection.
        J Neurosurg. 2017; 127: 171-181
        • Lee G.I.
        • Lee M.R.
        Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and asso.
        Surg Endosc Other Interv Tech. 2018; 32: 62-72
        • Villanueva-Meyer J.E.
        • Mabray M.C.
        • Cha S.
        Current clinical brain tumor imaging.
        Neurosurgery. 2017; 81: 397-415
        • Mandonnet E.
        • Jbabdi S.
        • Taillandier L.
        • Galanaud D.
        • Benali H.
        • Capelle L.
        • et al.
        Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping.
        Neuro Oncol. 2007; 9: 63-69
        • Volz L.J.
        • Kocher M.
        • Lohmann P.
        • Shah N.J.
        • Fink G.R.
        • Galldiks N.
        Functional magnetic resonance imaging in glioma patients: from clinical applications to future perspectives.
        Q J Nucl Med Mol Imaging. 2018; https://doi.org/10.23736/S1824-4785.18.03101-1
        • Dubey A.
        • Kataria R.
        • Sinha V.D.
        Role of diffusion tensor imaging in brain tumor surgery.
        Asian J Neurosurg. 2018; 13: 302-306
        • Spena G.
        • Schucht P.
        • Seidel K.
        • Rutten G.-J.
        • Freyschlag C.F.
        • D’Agata F.
        • et al.
        Brain tumors in eloquent areas: a European multicenter survey of intraoperative mapping techniques, intraoperative seizures occurrence, and antiepileptic drug prophylaxis.
        Neurosurg Rev. 2017; 40: 287-298
        • Kersten-Oertel M.
        • Jannin P.
        • Collins D.L.
        The state of the art of visualization in mixed reality image guided surgery.
        Comput Med Imaging Graph. 2013; 37: 98-112
        • Kersten-oertel M.
        • Jannin P.
        • Collins D.L.
        DVV: a taxonomy for mixed reality visualization in image guided surgery.
        IEEE Trans Vis Comput Graph. 2012; 18: 332-352
        • Kumar A.
        • Maskara S.
        Coping up with the information overload in the medical profession.
        J Biosci Med. 2015; 3: 124-127
      2. Davis D, Ciurea I, Flanagan T. Solving the information overload problem: a letter from Canada. 2004, www.agreecollaboration.org (accessed 3 Sep2018).

        • Dewan M.C.
        • Rattani A.
        • Fieggen G.
        • Arraez M.A.
        • Servadei F.
        • Boop F.A.
        • et al.
        Global neurosurgery: the current capacity and deficit in the provision of essential neurosurgical care. Executive summary of the global neurosurgery initiative at the program in global surgery and social change.
        J Neurosurg. 2018; : 1-10
        • Smith J.A.
        • Jivraj J.
        • Wong R.
        • Yang V.
        30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems.
        Ann Biomed Eng. 2016; 44: 836-846
        • Belykh E.G.
        • Zhao X.
        • Cavallo C.
        • Bohl M.A.
        • Yagmurlu K.
        • Aklinski J.L.
        • et al.
        Laboratory evaluation of a robotic operative microscope – visualization platform for neurosurgery.
        Cureus. 2018; https://doi.org/10.7759/cureus.3072
        • Madhavan K.
        • Kolcun J.P.G.
        • Chieng L.O.
        • Wang M.Y.
        Augmented-reality integrated robotics in neurosurgery: are we there yet?.
        Neurosurg Focus. 2017; 42: E3
        • Gorbanev I.
        • Agudelo-Londoño S.
        • González R.A.
        • Cortes A.
        • Pomares A.
        • Delgadillo V.
        • et al.
        A systematic review of serious games in medical education: quality of evidence and pedagogical strategy.
        Med Educ Online. 2018; 23: 1438718
        • Yang D.L.
        • Xu Q.W.
        • Che X.M.
        • Wu J.S.
        • Sun B.
        Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors.
        Surg Neurol. 2009; 72: 682-689
        • Wang S.S.
        • Zhang S.M.
        • Jing J.J.
        Stereoscopic virtual reality models for planning tumor resection in the sellar region.
        BMC Neurol. 2012; : 12https://doi.org/10.1186/1471-2377-12-146
        • Qiu T.M.
        • Zhang Y.
        • Wu J.S.
        • Tang W.J.
        • Zhao Y.
        • Pan Z.G.
        • et al.
        Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography.
        Acta Neurochir (Wien). 2010; 152: 1847-1857
        • Alotaibi F.E.
        • AlZhrani G.A.
        • Mullah M.A.S.
        • Sabbagh A.J.
        • Azarnoush H.
        • Winkler-Schwartz A.
        • et al.
        Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator.
        Neurosurgery. 2015; 11: 89-98
        • Sun G.C.
        • Wang F.
        • Chen X.L.
        • Yu X.G.
        • Ma X.D.
        • Zhou D.B.
        • et al.
        Impact of virtual and augmented reality based on intraoperative magnetic resonance imaging and functional neuronavigation in glioma surgery involving eloquent areas.
        World Neurosurg. 2016; 96: 375-382
        • Yoshino M.
        • Kin T.
        • Nakatomi H.
        • Oyama H.
        • Saito N.
        Presurgical planning of feeder resection with realistic three-dimensional virtual operation field in patient with cerebellopontine angle meningioma.
        Acta Neurochir (Wien). 2013; 155: 1391-1399
        • Abhari K.
        • Baxter J.S.H.
        • Chen E.C.S.
        • Khan A.R.
        • Peters T.M.
        • De Ribaupierre S.
        • et al.
        Training for planning tumour resection: augmented reality and human factors.
        IEEE Trans Biomed Eng. 2015; 62: 1466-1477
        • Deng W.
        • Li F.
        • Wang M.
        • Song Z.
        Easy-to-use augmented reality neuronavigation using a wireless tablet PC.
        Stereotact Funct Neurosurg. 2014; 92: 17-24
        • Inoue D.
        • Cho B.
        • Mori M.
        • Kikkawa Y.
        • Amano T.
        • Nakamizo A.
        • et al.
        Preliminary study on the clinical application of augmented reality neuronavigation.
        J Neurol Surgery, Part A Cent Eur Neurosurg. 2013; 74: 71-76
        • Mahvash M.
        • Tabrizi L.B.
        A novel augmented reality system of image projection for image-guided neurosurgery.
        Acta Neurochir (Wien). 2013; 155: 943-947