Advertisement
Clinical study| Volume 57, P20-25, November 2018

Increased brain glucose metabolism in chronic severe traumatic brain injury as determined by longitudinal 18F-FDG PET/CT

  • Tomohiro Yamaki
    Correspondence
    Corresponding author at: National Agency for Automotive Safety and Victims’ Aid, Rehabilitation Center for Traumatic Apallics Chiba, Division of Neurosurgery, 3-30-1 Isobe, Mihama-ku, Chiba 261-0012, Japan.
    Affiliations
    Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan

    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Author Footnotes
    1 Present address: Sousen Hospital, 2592, Sarashinacho, Wakaba-ku, Chiba-shi, Chiba 265-0073, Japan.
    Yoshio Uchino
    Footnotes
    1 Present address: Sousen Hospital, 2592, Sarashinacho, Wakaba-ku, Chiba-shi, Chiba 265-0073, Japan.
    Affiliations
    Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan

    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Haruko Henmi
    Affiliations
    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Mizuho Kamezawa
    Affiliations
    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Miyoko Hayakawa
    Affiliations
    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Tomoki Uchida
    Affiliations
    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Yoshihiro Ozaki
    Affiliations
    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Shinji Onodera
    Affiliations
    Division of PET Imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Nobuo Oka
    Affiliations
    Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Masaru Odaki
    Affiliations
    Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Daisuke Itou
    Affiliations
    Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Shigeki Kobayashi
    Affiliations
    Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims’ Aid, 3-30-1 Isobe, Mihama-ku, Chiba-shi, Chiba 261-0012, Japan
    Search for articles by this author
  • Author Footnotes
    1 Present address: Sousen Hospital, 2592, Sarashinacho, Wakaba-ku, Chiba-shi, Chiba 265-0073, Japan.
Published:August 29, 2018DOI:https://doi.org/10.1016/j.jocn.2018.08.052

      Highlights

      • Chronic severe traumatic head injury patients have changed brain glucose metabolism.
      • FDG uptake was high in patients with high wakefulness and small ventricular size.
      • Anticonvulsant withdrawal and language expression improved with FDG uptake.

      Abstract

      Little is known about changes in glucose metabolism in patients with chronic severe traumatic brain injury (sTBI). It remains to be elucidated how neurological manifestations of sTBI are associated with brain glucose metabolism during longitudinal follow-up. We show here that neurological manifestations are associated with changes of brain glucose metabolism by using two serial 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images. In this longitudinal observational study, two serial 18F-FDG PET/CT images from each of 45 patients were analyzed for whole-brain maximum standardized uptake values (SUVmax). For clinical assessment, we applied two different scales: the coma recovery scale-revised and the original Chiba score with additional information regarding nutrition, excretion, facial expression, and position change of the patient's relative immobility and bedridden state. As a result, the increased FDG uptake group was associated with a high level of wakefulness (first PET, p = 0.04; second PET, p = 0.01) and small ventricular size (first PET, p = 0.01; second PET, p = 0.01). In addition, anticonvulsant withdrawal (p = 0.001), improvement of total Chiba score (p = 0.01), language expression (p = 0.03), position change (p = 0.03), and communication (p = 0.03) were accelerated in the increased FDG uptake group. Spearman’s rank correlation coefficients of change in SUVmax and language expression between the first and second PET were 0.4 (p = 0.01). Our results indicate that chronic severe traumatic head injury patients have changed brain glucose metabolism.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Godbolt A.K.
        • Deboussard C.N.
        • Stenberg M.
        • Lindgren M.
        • Ulfarsson T.
        • Borg J.
        Disorders of consciousness after severe traumatic brain injury: a Swedish-Icelandic study of incidence, outcomes and implications for optimizing care pathways.
        J Rehabil. 2013; 45: 741-748https://doi.org/10.2340/16501977-1167
        • Demertzi A.
        • Soddu A.
        • Laureys S.
        Consciousness supporting networks.
        Curr Opin Neurobiol. 2013; 23: 239-244https://doi.org/10.1016/j.conb.2012.12.003
        • Schiff N.D.
        Modeling the minimally conscious state: measurements of brain function and therapeutic possibilities.
        Prog Brain Res. 2005; 150: 473-493
        • Hellstrøm T.
        • Westlye L.T.
        • Sigurdardottir S.
        • Brunborg C.
        • Soberg H.L.
        • Holthe Ø.
        • et al.
        Longitudinal changes in brain morphology from 4 weeks to 12 months after mild traumatic brain injury: associations with cognitive functions and clinical variables.
        Brain Inj. 2017; 31: 674-685https://doi.org/10.1080/02699052.2017.1283537
        • Bagnato S.
        • Boccagni C.
        • Sant'Angelo A.
        • Fingelkurts A.A.
        • Fingelkurts A.A.
        • Galardi G.
        Longitudinal assessment of clinical signs of recovery in patients with unresponsive wakefulness syndrome after traumatic or nontraumatic brain injury.
        J Neurotrauma. 2017; 34: 535-539https://doi.org/10.1089/neu.2016.4418
        • Mitsis E.M.
        • Riggio S.
        • Kostakoglu L.
        • Dickstein D.L.
        • Machac J.
        • Delman B.
        • et al.
        Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury.
        Transl Psychiatry. 2014; 4e441https://doi.org/10.1038/tp.2014.91
        • de la Cueva-Barrao L.
        • Noé-Sebastián E.
        • Sopena-Novales P.
        • López-Aznar D.
        • Ferri-Campos J.
        • Colomer-Font C.
        • et al.
        The clinical relevance of FDG-PET imaging in severe traumatic brain injuries.
        Rev Neurol. 2009; 49: 58-63
        • Liu Y.R.
        • Cardamone L.
        • Hogan R.E.
        • Gregoire M.C.
        • Williams J.P.
        • Hicks R.J.
        • et al.
        Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat.
        J Nucl Med. 2010; 51: 1788-1795https://doi.org/10.2967/jnumed.110.078626
        • Kondziella D.
        • Friberg C.K.
        • Frokjaer V.G.
        • Fabricius M.
        • Møller K.
        Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis.
        J Neurol Neurosurg Psychiatry. 2016; 87: 485-492https://doi.org/10.1136/jnnp-2015-310958
        • Oka N.
        • Uchino Y.
        • Odaki M.
        • Nakata M.
        • Okai M.
        • Kono M.
        Assessment of functional improvement in vegetative or minimally conscious patients caused by automotive accidents using a newly designed scoring system.
        J Jpn Counc Traffic Sci. 2007; 7: 17-23
        • Tamashiro M.
        • Cozzo D.
        • Mattei M.
        • Salierno F.
        • Rivas M.E.
        • Alzúa O.
        • et al.
        Early motor predictors of recovery in patients with severe traumatic brain injury.
        Brain Inj. 2012; 26: 921-926https://doi.org/10.3109/02699052.2012.661911
        • Schiff N.D.
        Multimodal neuroimaging approaches to disorders of consciousness.
        J Head Trauma Rehabil. 2006; 21: 388-397
        • Annen J.
        • Frasso G.
        • Crone J.S.
        • Heine L.
        • Di Perri C.
        • Martial C.
        • et al.
        Regional brain volumetry and brain function in severely brain-injured patients.
        Ann Neurol. 2018; https://doi.org/10.1002/1n1.25214
        • Annen J.
        • Heine L.
        • Ziegler E.
        • Frasso G.
        • Bahri M.
        • Di Perri C.
        • et al.
        Function-structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET.
        Hum Brain Mapp. 2016; 37: 3707-3720https://doi.org/10.1002/hbm.23269
        • Uchino Y.
        Evaluation of functional improvements of the patients with severe brain injury in the chronic stage using FDG-PET – Relation between brain FDG uptake and discontinuing of antiepileptics.
        J Nucl Med. 2013; 54: 158
        • Bodart O.
        • Gosseries O.
        • Wannez S.
        • Thibaut A.
        • Annen J.
        • Boly M.
        • et al.
        Measures of metabolism and complexity in the brain of patients with disorders of consciousness.
        Neuroimage Clin. 2017; 14: 354-362https://doi.org/10.1016/j.nicl.2017.02.002
        • García-Panach J.
        • Lull N.
        • Lull J.J.
        • Ferri J.
        • Martínez C.
        • Sopena P.
        • et al.
        A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas.
        J Neurotrauma. 2011; 28: 1707-1717https://doi.org/10.1089/neu.2011.1851
        • O'Hayon B.B.
        • Drake J.M.
        • Ossip M.G.
        • Tuli S.
        • Clarke M.
        Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus.
        Pediatr Neurosurg. 1998; 29: 245-249
        • Dougall D.
        • Poole N.
        • Agrawal N.
        Pharmacotherapy for chronic cognitive impairment in traumatic brain injury.
        Cochrane Database Syst Rev. 2015; 12 (CD009221 10.1002/14651858.CD009221.pub2)
        • Spritzer S.D.
        • Kinney C.L.
        • Condie J.
        • Wellik K.E.
        • Hoffman-Snyder C.R.
        • Wingerchuk D.M.
        • et al.
        Amantadine for patients with severe traumatic brain injury: a critically appraised topic.
        Neurologist. 2015; 19: 61-64https://doi.org/10.1097/NRL.0000000000000001
        • Giacino J.T.
        • Whyte J.
        • Bagiella E.
        • Kalmar K.
        • Childs N.
        • Khademi A.
        • et al.
        Placebo-controlled trial of amantadine for severe traumatic brain injury.
        N Engl J Med. 2012; 366: 819-826https://doi.org/10.1056/NEJMoa1102609
        • Weston J.
        • Greenhalgh J.
        • Marson A.G.
        Antiepileptic drugs as prophylaxis for post-craniotomy seizures.
        Cochrane Database Syst Rev. 2015; 3 (CD007286 10.1002/14651858.CD007286.pub3)
        • Oka N.
        • Odaki M.
        • Uchino Y.
        • Okai M.
        Analysis of meaningfully improved patients in chronic stage with severe brain damage after automotive accident: focused on dose of anticonvulsant and pressure setting of shunt device.
        J Jpn Counc Traffic Sci. 2009; 9: 44-49
        • Hamberg L.M.
        • Hunter G.J.
        • Alpert N.M.
        • Choi N.C.
        • Babich J.W.
        • Fischman A.J.
        The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification?.
        J Nucl Med. 1994; 35: 1308-1312
        • Byrnes K.R.
        • Wilson C.M.
        • Brabazon F.
        • von Leden R.
        • Jurgens J.S.
        • Oakes T.R.
        • et al.
        FDG-PET imaging in mild traumatic brain injury: a critical review.
        Front Neuroenergetics. 2014; 5: 13https://doi.org/10.3389/fnene.2013.00013