Advertisement
Clinical study| Volume 57, P68-73, November 2018

Download started.

Ok

Psychophysical evaluation of contrast sensitivity using Gabor patches in tobacco addiction

Published:September 05, 2018DOI:https://doi.org/10.1016/j.jocn.2018.08.034

      Highlights

      • Cigarette smoking consists of numerous compounds harmful to health.
      • The purpose of this study was to evaluate visual perception in tobacco addiction.
      • These results suggests that tobacco addiction affected visual perception.
      • This highlights the importance of understanding the diffuse effects of smoking on visual processing.

      Abstract

      This study, an extension of Fernandes et al. (2017), provided consistent contrast sensitivity function (CSF) measurements in a large sample. CSF was assessed for luminance stimuli in different 48 chronic smokers and 50 healthy nonsmokers. Stimuli for the CSF were Gabor patches with spatial frequencies of .2, 2.5, 5.0, 10.0, and 20.0 cycles per degree (cpd). The use of Gabor patches minimizes uncertainty in spatial position and detection of frequencies. The Gabor patches consisted of vertical gratings that were multiplied by a two-dimensional spatial Gaussian envelope. All of the groups were matched for gender and level of education. All of the participants were free from any neurological disorder, cardiovascular disease, and identifiable ocular disease, and they had normal or corrected-to-normal visual acuity. No abnormalities were detected on the fundoscopic examination or optical coherence tomographic examination. The smoker group had a lower CSF compared with healthy nonsmokers at all spatial frequencies. These results indicate that cigarette smoking or chronic exposure to its constituent compounds affects early-stage visual discrimination, suggesting the existence of deficits in early visual spatial processing in smokers.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chanon V.W.
        • Sours C.R.
        • Boettiger C.A.
        Attentional bias toward cigarette cues in active smokers.
        Psychopharmacology. 2010; 212: 309-320https://doi.org/10.1007/s00213-010-1953-1
        • Waters A.J.
        • Shiffman S.
        • Sayette M.A.
        • Paty J.A.
        • Gwaltney C.J.
        • Balabanis M.H.
        Attentional Bias Predicts Outcome in Smoking Cessation.
        Health Psychol Off J Div Health Psychol Am Psychol Assoc. 2003; 22: 378-387https://doi.org/10.1037/0278-6133.22.4.378
        • Besson M.
        • Granon S.
        • Mameli-Engvall M.
        • Cloëz-Tayarani I.
        • Maubourguet N.
        • Cormier A.
        • et al.
        Long-term effects of chronic nicotine exposure on brain nicotinic receptors.
        Proc Natl Acad Sci. 2007; 104: 8155-8160https://doi.org/10.1073/pnas.0702698104
      1. WHO. WHO REPORT ON THE GLOBAL TOBACCO EPIDEMIC, 2013 [Internet]. 2013. Available: http://apps.who.int/iris/bitstream/10665/85380/1/9789241505871_eng.pdf

      2. WHO WH. WHO report on the global tobacco epidemic, 2015: Raising taxes on tobacco [Internet]. 201Available: http://escholarship.org/uc/item/1fh1f32m

        • Durazzo T.C.
        • Meyerhoff D.J.
        • Nixon S.J.
        Chronic Cigarette Smoking: Implications for Neurocognition and Brain Neurobiology.
        Int J Environ Res Public Health. 2010; 7: 3760-3791https://doi.org/10.3390/ijerph7103760
        • D’Souza M.S.
        • Markou A.
        Neuronal Mechanisms Underlying Development of Nicotine Dependence: Implications for Novel Smoking-Cessation Treatments.
        Addict Sci Clin Pract. 2011; 6: 4-16
        • Karama S.
        • Ducharme S.
        • Corley J.
        • Chouinard-Decorte F.
        • Starr J.M.
        • Wardlaw J.M.
        • et al.
        Cigarette smoking and thinning of the brain’s cortex.
        Mol Psychiatry. 2015; 20: 778-785https://doi.org/10.1038/mp.2014.187
        • Xu J.
        • Mendrek A.
        • Cohen M.S.
        • Monterosso J.
        • Simon S.
        • Jarvik M.
        • et al.
        Effect of Cigarette Smoking on Prefrontal Cortical Function in Nondeprived Smokers Performing the Stroop Task.
        Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2007; 32: 1421-1428https://doi.org/10.1038/sj.npp.1301272
        • Zhou S.
        • Xiao D.
        • Peng P.
        • Wang S.-K.
        • Liu Z.
        • Qin H.-Y.
        • et al.
        Effect of smoking on resting-state functional connectivity in smokers: An fMRI study.
        Respirol Carlton Vic. 2017; https://doi.org/10.1111/resp.13048
        • Martins D.M.T.
        • Garcia C.F.D.
        • Baeck H.E.
        • Frota S.
        • Martins D.M.T.
        • Garcia C.F.D.
        • et al.
        Brainstem auditory evoked potentials in smokers.
        Rev CEFAC. 2016; 18: 47-54https://doi.org/10.1590/1982-0216201618113915
        • Golding J.F.
        Effects of cigarette smoking on resting EEG, visual evoked potentials and photic driving.
        Pharmacol Biochem Behav. 1988; 29: 23-32
        • Conrin J.
        The EEG effects of tobacco smoking–a review.
        Clin EEG Electroencephalogr. 1980; 11: 180-187
        • Hall G.H.
        Effects of nicotine and tobacco smoke on the electrical activity of the cerebral cortex and olfactory bulb.
        Br J Pharmacol. 1970; 38: 271-286
        • Zhong G.
        • Wang Y.
        • Zhang Y.
        • Guo J.J.
        • Zhao Y.
        Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers.
        PLoS ONE. 2015; 10e0118333https://doi.org/10.1371/journal.pone.0118333
        • Goriounova N.A.
        • Short Mansvelder HD.
        and Long-Term Consequences of Nicotine Exposure during Adolescence for Prefrontal Cortex Neuronal Network Function.
        Cold Spring Harb Perspect Med. 2012;2.; https://doi.org/10.1101/cshperspect.a012120
        • Govind A.P.
        • Vezina P.
        • Green W.N.
        Nicotine-induced Upregulation of Nicotinic Receptors: Underlying Mechanisms and Relevance to Nicotine Addiction.
        Biochem Pharmacol. 2009; 78: 756-765https://doi.org/10.1016/j.bcp.2009.06.011
        • Kunchulia M.
        • Pilz K.S.
        • Herzog M.H.
        Small effects of smoking on visual spatiotemporal processing.
        Sci Rep. 2014; 4: 7316https://doi.org/10.1038/srep07316
        • de T.M.
        • Fernandes
        • P,
        • Almeida
        • NL
        • de,
        • Santos
        • NA,
        dos. Effects of smoking and smoking abstinence on spatial vision in chronic heavy smokers.
        Sci Rep. 2017;7:; : 1690https://doi.org/10.1038/s41598-017-01877-z
      3. Santos NA dos, Simas ML de B. Contrast Sensitivity Function: Indicator of the Visual Perception of Form and of the Spatial Resolution. Psicol Reflex E Crítica. 2001;14: 589–597. doi:10.1590/S0102-79722001000300014

      4. Santos NA dos, Simas ML de B. Perception and visual processing of form: discussing contemporary models. Psicol Reflex E Crítica. 2001;14: 157–166. doi:10.1590/S0102-79722001000100013

        • Levi D.M.
        • Sharma V.
        • Klein S.A.
        Feature integration in pattern perception.
        Proc Natl Acad Sci U S A. 1997; 94: 11742-11746
        • Hot A.
        • Dul M.W.
        • Swanson W.H.
        Development and Evaluation of a Contrast Sensitivity Perimetry Test for Patients with Glaucoma.
        Invest Ophthalmol Vis Sci. 2008; 49: 3049-3057https://doi.org/10.1167/iovs.07-1205
        • Levine M.W.
        Shefner JM. Fundamentals of Sensation and Perception.
        Brooks/Cole Publishing Company. 1991;
        • Ishihara S.
        The Series of Plates Designed as a Test for.
        Colour-Blindness. 1972;
        • Heatherton T.F.
        • Kozlowski L.T.
        • Frecker R.C.
        • Fagerström K.O.
        The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire.
        Br J Addict. 1991; 86: 1119-1127
        • Issa J.S.
        A new nicotine dependence score and a new scale assessing patient comfort during smoking cessation treatment.
        J Bras Pneumol. 2012; 38: 761-765https://doi.org/10.1590/S1806-37132012000600012
        • Cox L.S.
        • Tiffany S.T.
        • Christen A.G.
        Evaluation of the brief questionnaire of smoking urges (QSU-brief) in laboratory and clinical settings.
        Nicotine Tob Res Off J Soc Res Nicotine Tob. 2001; 3: 7-16https://doi.org/10.1080/14622200020032051
        • Peli E.
        • Arend L.E.
        • Young G.M.
        • Goldstein R.B.
        Contrast sensitivity to patch stimuli: Effects of spatial bandwidth and temporal presentation.
        Spat Vis. 1993; 7: 1-14
        • Levitt H.
        Transformed up-down methods in psychoacoustics.
        J Acoust Soc Am. 1971;49:; Suppl 2: 467+
        • Andrade M.J.O.
        • Silva J.A.
        • Santos N.A.
        Influência do Cronotipo e do Horário da Medida na Sensibilidade ao Contraste Visual. 2015; 28: 522-531https://doi.org/10.1590/1678-7153.201528311
        • Santos D.
        • Antonio N.
        • Andrade S.M.
        • Calvo,
        BF. Detection of spatial frequency in brain-damaged patients: influence of hemispheric asymmetries and hemineglect.
        Front Hum Neurosci. 2013;7.; https://doi.org/10.3389/fnhum.2013.00092
        • Yoonessi A.
        • Yoonessi A.
        Functional Assessment of Magno, Parvo and Konio-Cellular Pathways; Current State and Future Clinical Applications.
        J Ophthalmic Vis Res. 2011; 6: 119-126
        • Klistorner A.
        • Crewther D.P.
        • Crewther S.G.
        Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP.
        Vision Res. 1997; 37: 2161-2169https://doi.org/10.1016/S0042-6989(97)00003-5
        • Ahmadi K.
        • Pouretemad H.R.
        • Esfandiari J.
        • Yoonessi A.
        • Yoonessi A.
        Psychophysical Evidence for Impaired Magno, Parvo, and Konio-cellular Pathways in Dyslexic Children.
        J Ophthalmic Vis Res. 2015; 10: 433-440https://doi.org/10.4103/2008-322X.176911
        • DeValois R.L.
        • DeValois K.K.
        Spatial Vision.
        Oxford University Press, 1990
        • Xu X.
        • Ichida J.M.
        • Allison J.D.
        • Boyd J.D.
        • Bonds A.B.
        • Casagrande V.A.
        A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus).
        J Physiol. 2001; 531: 203-218https://doi.org/10.1111/j.1469-7793.2001.0203j.x
        • Lalor E.C.
        • De Sanctis P.
        • Krakowski M.I.
        • Foxe J.J.
        Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account?.
        Schizophr Res. 2012; 139: 246-252https://doi.org/10.1016/j.schres.2012.05.022
        • Cadenhead K.S.
        • Geyer M.A.
        • Butler R.W.
        • Perry W.
        • Sprock J.
        • Braff D.L.
        Information processing deficits of schizophrenia patients: relationship to clinical ratings, gender and medication status.
        Schizophr Res. 1997; 28: 51-62https://doi.org/10.1016/S0920-9964(97)00085-6
        • Eriksen B.A.
        • Eriksen C.W.
        Effects of noise letters upon the identification of a target letter in a nonsearch task.
        Percept Psychophys. 1974; 16: 143-149https://doi.org/10.3758/BF03203267
        • Ambrose J.A.
        • Barua R.S.
        The pathophysiology of cigarette smoking and cardiovascular disease: An update.
        J Am Coll Cardiol. 2004; 43: 1731-1737https://doi.org/10.1016/j.jacc.2003.12.047
        • Metherate R.
        Nicotinic Acetylcholine Receptors in Sensory Cortex.
        Learn Mem. 2004; 11: 50-59https://doi.org/10.1101/lm.69904
        • Roy S.
        • Jayakumar J.
        • Martin P.R.
        • Dreher B.
        • Saalmann Y.B.
        • Hu D.
        • et al.
        Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus.
        Eur J Neurosci. 2009; 30: 1517-1526https://doi.org/10.1111/j.1460-9568.2009.06939.x
        • Skottun B.C.
        On the use of spatial frequency to isolate contributions from the magnocellular and parvocellular systems and the dorsal and ventral cortical streams.
        Neurosci Biobehav Rev. 2015; 56: 266-275https://doi.org/10.1016/j.neubiorev.2015.07.002
        • Skottun B.C.
        • Skoyles J.R.
        Contrast sensitivity and magnocellular functioning in schizophrenia.
        Vision Res. 2007; 47: 2923-2933https://doi.org/10.1016/j.visres.2007.07.016
        • Melis M.
        • Diana M.
        • Enrico P.
        • Marinelli M.
        • Brodie M.S.
        Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress.
        Alcohol Fayettev N. 2009; 43: 531-539https://doi.org/10.1016/j.alcohol.2009.05.004
        • Shiraishi-Yokoyama H.
        • Yokoyama H.
        • Matsumoto M.
        • Imaeda H.
        • Hibi T.
        Acetaldehyde inhibits the formation of retinoic acid from retinal in the rat esophagus.
        Scand J Gastroenterol. 2006; 41: 80-86https://doi.org/10.1080/00365520510023936
        • Ward R.J.
        • Colantuoni C.
        • Dahchour A.
        • Quertemont E.
        • De Witte P.
        Acetaldehyde-induced changes in monoamine and amino acid extracellular microdialysate content of the nucleus accumbens.
        Neuropharmacology. 1997; 36: 225-232
        • Martínez A.
        • Hillyard S.A.
        • Dias E.C.
        • Hagler D.J.
        • Butler P.D.
        • Guilfoyle D.N.
        • et al.
        Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging.
        J Neurosci Off J Soc Neurosci. 2008; 28: 7492-7500https://doi.org/10.1523/JNEUROSCI.1852-08.2008
      5. Santos NA dos, Simas ML de B, Nogueira RMTBL. Visual processing of form in the aged: threshold contrast curves to angular and spatial frequency. Psicol Reflex E Crítica. 2003;16: 271–277. https://doi.org/10.1590/S0102-79722003000200007.

        • Campbell F.W.
        • Maffei L.
        Contrast and spatial frequency.
        Sci Am. 1974; 231: 106-114https://doi.org/10.1038/scientificamerican1174-106
        • Shapley R.
        • Enroth-Cugell C.
        Chapter 9 visual adaptation and retinal gain controls.
        Prog Retinal Res. 1984; 3: 263-346https://doi.org/10.1016/0278-4327(84)90011-7
        • Fernandes T.M. de P.
        • Souza R.M. da C.E
        • Santos N.A. dos
        Visual function alterations in epilepsy secondary to migraine with aura: a case report.
        Psychol Neurosci. 2018; 11: 86-94https://doi.org/10.1037/pne0000121
        • Wilson H.R.
        • Humanski R.
        Spatial frequency adaptation and contrast gain control.
        Vision Res. 1993; 33: 1133-1149https://doi.org/10.1016/0042-6989(93)90248-U
        • Pelli D.G.
        • Bex P.
        Measuring contrast sensitivity.
        Vision Res. 2013; 90: 10-14https://doi.org/10.1016/j.visres.2013.04.015
        • Besson M.
        • Granon S.
        • Mameli-Engvall M.
        • Cloëz-Tayarani I.
        • Maubourguet N.
        • Cormier A.
        • et al.
        Long-term effects of chronic nicotine exposure on brain nicotinic receptors.
        Proc Natl Acad Sci. 2007; 104: 8155-8160https://doi.org/10.1073/pnas.0702698104
        • Levin E.D.
        Nicotinic Receptors in the Nervous System.
        CRC Press, 2001
        • Fernandes T.M.P.
        • de Andrade M.J.O.
        • Santana J.B.
        • Nogueira R.M.T.B.L.
        • dos Santos N.A.
        Tobacco use decreases visual sensitivity in schizophrenia.
        Front Psychol. 2018; 9https://doi.org/10.3389/fpsyg.2018.00288
        • Dickerson F.
        • Stallings C.R.
        • Origoni A.E.
        • Vaughan C.
        • Khushalani S.
        • Schroeder J.
        • Yolken R.H.
        Cigarette smoking among persons with schizophrenia or bipolar disorder in routine clinical settings, 1999-2011.
        Psychiatric Serv (Washington, D.C.). 2013; 64: 44-50https://doi.org/10.1176/appi.ps.201200143
        • Silverstein S.M.
        Visual perception disturbances in schizophrenia: a unified model.
        in: Li M. Spaulding W.D. The Neuropsychopathology of Schizophrenia. Springer International Publishing, Cham2016: 77-132https://doi.org/10.1007/978-3-319-30596-7_4
        • Helstrom C.
        An expansion of a signal in Gaussian elementary signals (Corresp.).
        IEEE Trans Inf Theory. 1966; 12: 81-82https://doi.org/10.1109/TIT.1966.1053847