Advertisement
Experimental study| Volume 57, P157-161, November 2018

Stereologic and ultrastructural comparison of human and rat amniotic membrane wrapping for rat sciatic nerve repair

Published:August 18, 2018DOI:https://doi.org/10.1016/j.jocn.2018.08.007

      Highlights

      • Nerve injuries result from trauma or pathological lesions like tumors and cause functional and esthetic deficits.
      • Repairing treatments that promote nervous system plasticity mechanisms maintaining can improve functional recovery.
      • Amniotic membrane helps the regeneration treatment as with epithelization and decreases inflammation and neovascularization.
      • Allografts instead of xenografts results with less immunological reactions on the injured site supporting axonal regeneration.

      Abstract

      In this study we aimed to examine the effects on wound healing and nerve regeneration of human and rat amniotic membrane wraps around primary epineural anastomosis areas after a peripheral nerve transection injury in rats. We randomized 25 male adult rats with induced peripheral transection injuries into 5 groups (control, transection injury, primary epineural anastomosis [PEA] after injury, PEA with a human amniotic membrane [hAM] wrap, and PEA with a rat amniotic membrane [rAM] wrap groups and treated their injuries accordingly. We took tissue samples from the anastomosis regions, 12 weeks after the experiment, and analyzed them stereologically and ultrastructurally. We performed a statistical analysis with the recovered stereological counts and the measurement data. Our results showed that the use of amniotic membranes for allografts (between same species) instead of xenografts (between different species), along with microsurgery, provides a suitable microenvironment during the healing process with less immunological reaction on the injured site and supports axonal regeneration.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wolbank S.
        • Hildner F.
        • Redl H.
        • van Griensven M.
        • Gabriel C.
        • Hennerbichler S.
        Impact of human amniotic membrane preparation on release of angiogenic factors.
        J Tissue Eng Regen Med. 2009; 3: 651-654
        • Schroeder A.
        • Theiss C.
        • Steuhl K.P.
        • Meller K.
        • Meller D.
        Effects of the human amniotic membrane on axonal outgrowth of dorsal root ganglia neurons in culture.
        Curr Eye Res. 2007; 32: 731-738
        • Kim J.S.
        Temporary amniotic membrane graft promotes healing and inhibits protease activity in corneal wound induced by alkali burn in rabbits.
        Invest Ophthalmol Vis Sci. 1998; 39s90
        • Lee S.H.
        • Tseng S.C.
        Amniotic membrane transplantation for persistent epithelial defects with ulceration.
        Am J Ophthalmol. 1997; 123: 303-312
        • Kaiser R.
        • Ullas G.
        • Havránek P.
        • Homolková H.
        • Miletín J.
        • Tichá P.
        • et al.
        Current concepts in peripheral nerve injury repair.
        Acta Chir Plast. 2017; 59: 85-91
        • Koizumi N.J.
        • Inatomi T.J.
        • Sotozono C.J.
        Growth factor mRNA and protein in preserved human amniotic membrane.
        Curr Eye Res. 2000; 20: 173-177
        • Hao Y.
        • Ma D.H.
        • Hwang D.G.
        Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane.
        Cornea. 2000; 19: 348-352
        • Lee H.
        • Niederkorn J.Y.
        • Neelam S.
        • Mayhew E.
        • Word R.A.
        • McCulley J.P.
        • et al.
        Immunosuppressive factors secreted by human amniotic epithelial cells.
        Invest Ophthalmol Vis Sci. 2005; 46: 900-907
        • Sridhar M.S.
        • Bansal A.K.
        • Sangwan V.S.
        • Rao G.N.
        Amniotic membrane transplantation in acute chemical thermal injury.
        Am J Ophtalmol. 2000; 130: 134-137
        • Klama-Baryła Agnieszka
        • Łabuś Wojciech
        • Kitala Diana
        • Kraut Małgorzata
        • Kawecki Marek
        Preparation of amniotic membrane and its application in thetreatment of skin loss and lyell’s syndrome (toxic epidermal necrolysis): current state and new opportunities.
        J Clin Exp Dermatol Res. 2017; 8: 5
        • Schreier P.
        • Darmann J.
        • Jürgens C.
        • Schlüter R.
        • Giebel J.
        • Tost F.
        Preparationof the amniotic membrane with the waterjet.
        Ophthalmologe. 2011; 108: 1145-1154
        • Kitala D.
        • Kawecki M.
        • Klama-Baryła A.
        • Łabuś W.
        • Glik J.
        • Kraut M.
        • et al.
        The isolation and production of the ready-to-use product (the amnioticstem cell culture) in accordance with good manufacturing practice regulations.
        Stem Cells Dev. 2017; 26: 694-707
        • Spector J.G.
        • Lee P.
        • Derby A.
        • Frierdich G.E.
        • Neises G.
        • Roufa D.G.
        Rabbit facial nerve regeneration in ngf-containing silastic tubes.
        Laryngoscope. 1993; 103: 548-558
        • Cunha A.S.
        • Lemos S.P.S.
        • Silva C.S.
        • Barros T.E.P.
        • Costa M.P.
        • Ferreira M.C.
        The use of glycerol-treated venous graft in damaged nerves repair: an experimental study in rats.
        Acta Ortop Bras. 2007; 15: 210-213
        • Wolff K.D.
        • Walter G.
        • Zimmer C.
        Nerve reconstruction with glycerol preserved allogenic grafts in the rat.
        Microsurgery. 1993; 14: 315-322
        • Bain J.R.
        • Mackinnon S.E.
        • Hunter D.A.
        Functional evaluation of complete sciatic, peroneal, and posterior tibial lesions in the rat.
        Plast Reconstr Surg. 1989; 83: 129-136
        • Costa M.P.
        • Cunha A.S.
        • Silva C.F.
        • Barros Filho T.E.P.
        • Ferreira M.C.
        Use of polyglycolic acid tube associated with FK506 in regeneration of peripheral nerves.
        Acta Ortop Bras. 2006; 14: 25-29
        • Smith M.S.
        • Browne J.D.
        The effect of endothelial cell growth factor on peripheral nerve regeneration.
        Otolaryngol Head Neck Surg. 1998; 118: 178-182
        • Heijke G.C.
        • Klopper P.J.
        • Dutrieux R.P.
        Vein graft conduits versus conventional suturing in peripheral nerve reconstruction.
        Microsurgery. 1993; 14: 584-588
        • Lemos S.P.S.
        • Hayashi I.
        • Cunha A.S.
        • Da Silva C.F.
        • Barros T.E.P.
        • Costa M.P.
        • et al.
        Glycerol-preserved allogenous nerve: an experimental study with rats.
        Acta Ortop Bras. 2008; 16: 133-137
        • Tseng C.Y.
        • Hu G.
        • Ambron R.T.
        • Chiu D.T.W.
        Histologic analysis of Schwann cell migration and peripheral nerve regeneration in the autogenous venous nerve conduit (AVNC).
        J Reconstr Microsurg. 2003; 19: 331-339
        • Hentz V.R.
        • Rosen J.M.
        • Xiao S.J.
        • Mcgill K.C.
        • Abraham G.
        A comparison of suture and tubulization nerve repair technique in a primate.
        J Hand Surg. 1991; 16: 251-261
        • Chiu D.T.W.
        • Lovelace R.E.
        • Yu L.
        Comparative electrophysiologic evaluation of nerve grafts and autogenous vein grafts as nerve conduits: an experimental study.
        J Reconstr Microsurg. 1988; 4: 303-310
        • De Rotth A.
        Plastic repair of conjunctival defects with fetal membrane.
        Arch Ohthalmol. 1940; 23: 522-525
        • Sorsby A.
        • Hythorne J.
        • Reed H.
        Further experience with amniotic membrane grafts in coustic burns of the eye.
        Br J Ophthalmol. 1947; 31: 409-418
        • Lemke A.
        • Ferguson J.
        • Gross K.
        • Penzenstadler C.
        • Bradl M.
        • Mayer R.L.
        • et al.
        Transplantation of human amnion prevents recurring adhesionsand ameliorates fibrosis in a rat model of sciatic nerve scarring.
        Acta Biomater. 2018 Jan; 15: 335-349
        • Sadraie S.H.
        • Parivar K.
        • Arabi F.
        • Moattari M.
        • Kaka G.
        • Mansouri K.
        Study of transected sciatic nerve repair by amniotic membrane with betamethasone in adult albino wistar rats.
        Arch Iran Med. 2016; 19: 612-617
        • Li Y.
        • Guo L.
        • Ahn H.S.
        • Kim M.H.
        • Kim S.W.
        Amniotic mesenchymal stem cells display neurovascular tropism and aid in the recovery of injured peripheral nerves.
        J Cell Mol Med. 2014; 18: 1028-1034
        • Duan X.L.
        • Xu Y.Z.
        • Zeng Z.C.
        Bridging rat sciatic nerve defects with the composite nerve-muscle autografts wrapped with human amnion matrix membrane.
        Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2004; 29: 279-283
        • Meller D.
        • Pires R.T.
        • Mack R.J.
        • Figueiredo F.
        • Heiligenhaus A.
        • Park W.C.
        • et al.
        Amniotic membrane transplantation for acute chemical and thermal burns.
        Ophthalmology. 2000; 107: 980-990