Advertisement

Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery

Published:October 27, 2016DOI:https://doi.org/10.1016/j.jocn.2016.09.002

      Highlights

      • Virtual reality (VR) and augmented reality (AR) have great potential in neurosurgery.
      • Immersive VR has the potential to be used an educational tool.
      • AR has the added potential of use in the live operative field.
      • Further improvement of VR and AR is crucial to its integration into neurosurgery.

      Abstract

      Neurosurgery has undergone a technological revolution over the past several decades, from trephination to image-guided navigation. Advancements in virtual reality (VR) and augmented reality (AR) represent some of the newest modalities being integrated into neurosurgical practice and resident education. In this review, we present a historical perspective of the development of VR and AR technologies, analyze its current uses, and discuss its emerging applications in the field of neurosurgery.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Swan 2nd, J.E.
        • Jones A.
        • Kolstad E.
        • et al.
        Egocentric depth judgments in optical, see-through augmented reality.
        IEEE Trans Vis Comput Graph. 2007; 13: 429-442
        • Chaer R.D.
        • Derubertis B.G.
        • Lin S.C
        • et al.
        Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study.
        Ann Surg. 2006; 244: 343-352
        • Gorman P.J.
        • Meier A.H.
        • Krummel T.M.
        Simulation and virtual reality in surgical education: real or unreal?.
        Arch Surg. 1999; 134: 1203-1208
        • Singh H.
        • Kalani M.
        • Acosta-Torres S.
        • et al.
        History of simulation in medicine: from Resusci Annie to the Ann Myers Medical Center.
        Neurosurgery. 2013; 73: 9-14
        • Aoun S.G.
        • McClendon Jr., J.
        • Ganju A.
        • et al.
        The Association for Surgical Education’s roadmap for research on surgical simulation.
        World Neurosurg. 2012; 78: 4-5
        • Apuzzo M.L.
        Virtual neurosurgery: forceps, scissors, and suction meet the microprocessor, rocket science, and nuclear physics.
        Neurosurgery. 2009; 64: 785
        • Spicer M.A.
        • Apuzzo M.L.
        Virtual reality surgery: neurosurgery and the contemporary landscape.
        Neurosurgery. 2003; 52 ([discussion 96–7]): 489-497
        • Apuzzo M.L.
        • Elder J.B.
        • Liu C.Y.
        The metamorphosis of neurological surgery and the reinvention of the neurosurgeon.
        Neurosurgery. 2009; 64 ([discussion 94–5]): 788-794
        • Bohm P.E.
        • Arnold P.M.
        Simulation and resident education in spinal neurosurgery.
        Surg Neurol Int. 2015; 6: 33
        • Alaraj A.
        • Lemole M.G.
        • Finkle J.H.
        • et al.
        Virtual reality training in neurosurgery: review of current status and future applications.
        Surg Neurol Int. 2011; 2: 52
        • Gallagher A.G.
        • Ritter E.M.
        • Champion H.
        • et al.
        Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training.
        Ann Surg. 2005; 241: 364-372
        • Kapadia M.R.
        • DaRosa D.A.
        • MacRae H.M.
        • et al.
        Current assessment and future directions of surgical skills laboratories.
        J Surg Educ. 2007; 64: 260-265
        • Ahlberg G.
        • Enochsson L.
        • Gallagher A.G.
        • et al.
        Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies.
        Am J Surg. 2007; 193: 797-804
        • Alaraj A.
        • Charbel F.T.
        • Birk D.
        • et al.
        Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training.
        Neurosurgery. 2013; 72: 115-123
        • Robison R.A.
        • Liu C.Y.
        • Apuzzo M.L.
        Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.
        World Neurosurg. 2011; 76: 419-430
        • Lemole M.
        • Banerjee P.P.
        • Luciano C.
        • et al.
        Virtual ventriculostomy with ’shifted ventricle’: neurosurgery resident surgical skill assessment using a high-fidelity haptic/graphic virtual reality simulator.
        Neurol Res. 2009; 31: 430-431
        • Munz Y.
        • Almoudaris A.M.
        • Moorthy K.
        • et al.
        Curriculum-based solo virtual reality training for laparoscopic intracorporeal knot tying: objective assessment of the transfer of skill from virtual reality to reality.
        Am J Surg. 2007; 193: 774-783
        • Aggarwal R.
        • Ward J.
        • Balasundaram I.
        • et al.
        Proving the effectiveness of virtual reality simulation for training in laparoscopic surgery.
        Ann Surg. 2007; 246: 771-779
        • Drummond K.H.
        • Houston T.
        • Irvine T.
        • et al.
        The rise and fall and rise of virtual reality.
        Vox Media, 2014
      1. Virtual reality systems.
        Academic Press Limited, San Diego, CA1993
      2. Merel T. The 7 drivers of the $150 billion AR/VR industry. Aol Tech; 2015.

        • Sekhar L.N.
        • Tariq F.
        • Kim L.J.
        • et al.
        Commentary: virtual reality and robotics in neurosurgery.
        Neurosurgery. 2013; 72: 1-6
        • Lewis T.M.
        • Aggarwal R.
        • Rajaretnam N.
        • et al.
        Training in surgical oncology – the role of VR simulation.
        Surg Oncol. 2011; 20: 134-139
        • Lewis T.A.
        • Kwasnicki R.M.
        • Rajaretnam N.
        • et al.
        Can virtual reality simulation be used for advanced bariatric surgical training?.
        Surgery. 2012; 151: 779-784
        • Thijssen A.S.
        • Schijven M.P.
        Contemporary virtual reality laparoscopy simulators: quicksand or solid grounds for assessing surgical trainees?.
        Am J Surg. 2010; 199: 529-541
        • Kirkman M.A.
        • Ahmed M.
        • Albert A.F.
        • et al.
        The use of simulation in neurosurgical education and training. A systematic review.
        J Neurosurg. 2014; 121: 228-246
        • Aucar J.A.
        • Groch N.R.
        • Troxel S.A.
        • et al.
        A review of surgical simulation with attention to validation methodology.
        Surg Laparosc Endosc Percutan Tech. 2005; 15: 82-89
        • Carter F.J.
        • Schijven M.P.
        • Aggarwal R.
        • et al.
        Consensus guidelines for validation of virtual reality surgical simulators.
        Surg Endosc. 2005; 19: 1523-1532
        • Dalgarno B.L.
        • Mark J.W.
        What are the learning affordances of 3-D virtual environments?.
        Br J Educ Technol. 2010; 41: 10-32
        • Whitelock D.B.
        • Brna P.
        • Holland S.
        What is the value of virtual reality for conceptual learning? Towards a theoretical framework.
        in: Brna P.P. Paiva A. Self J.A. European Conference on Artificial Intelligence in Education. Edicões Colibri, Lisbon1996: 136-141
        • Hedberg J.A.
        • Alexander S.
        Virtual reality in education: defining researchable issues.
        Educ Media Int. 1994; 31: 214-220
        • Rosseau G.
        • Bailes J.
        • del Maestro R.
        • et al.
        The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery.
        Neurosurgery. 2013; 73: 85-93
        • Aggarwal R.B.
        • black S.A.
        • Hance J.R.
        • et al.
        Virtual reality simulation training can improve inexperienced surgeon’s endovascular skills.
        Eur J Vasc Endovasc Surg. 2006; 31: 588-593
        • Patel A.
        • Koshy N.
        • Ortega-Barnett J.
        • et al.
        Neurosurgical tactile discrimination training with haptic-based virtual reality simulation.
        Neurol Res. 2014; 36: 1035-1039
        • Gasco J.
        • Patel A.
        • Ortega-Barnett J.
        • et al.
        Virtual reality spine surgery simulation: an empirical study of its usefulness.
        Neurol Res. 2014; 36: 968-973
        • Yudkowsky R.
        • Luciano C.
        • Banerjee P.
        • et al.
        Practice on an augmented reality/haptic simulator and library of virtual brains improves residents’ ability to perform a ventriculostomy.
        Simul Healthc. 2013; 8: 25-31
        • Alaraj A.
        • Luciano C.J.
        • Bailey D.P.
        • et al.
        Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.
        Neurosurgery. 2015; 11: 52-58
        • AlZhrani G.
        • Alotaibi F.
        • Azarnoush H.
        • et al.
        Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.
        J Surg Educ. 2015;
        • Schirmer C.M.
        • Elder J.B.
        • Roitberg B.
        • et al.
        Virtual reality-based simulation training for ventriculostomy: an evidence-based approach.
        Neurosurgery. 2013; 73: 66-73
        • Ray W.Z.
        • Ganju A.
        • Harrop J.S.
        • et al.
        Developing an anterior cervical diskectomy and fusion simulator for neurosurgical resident training.
        Neurosurgery. 2013; 73: 100-106
        • Holloway T.
        • Lorsch Z.S.
        • Chary M.A.
        • et al.
        Operator experience determines performance in a simulated computer-based brain tumor resection task.
        Int J Comput Assist Radiol Surg. 2015;
        • Choudhury N.
        • Gelinas-Phaneuf N.
        • Delorme S.
        • et al.
        Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills.
        World Neurosurg. 2013; 80: e9-e19
        • Gelinas-Phaneuf N.
        • Choudhury N.
        • Al-Habib A.R.
        • et al.
        Assessing performance in brain tumor resection using a novel virtual reality simulator.
        Int J Comput Assist Radiol Surg. 2014; 9: 1-9
        • Hooten K.G.
        • Lister J.R.
        • Lombard G.
        • et al.
        Mixed reality ventriculostomy simulation: experience in neurosurgical residency.
        Neurosurgery. 2014; 10 ([discussion 81]): 576-581
        • Alotaibi F.E.
        • AlZhrani G.A.
        • Mullah M.A.
        • et al.
        Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator.
        Neurosurgery. 2015; 11 ([discussion]): 89-98
        • Alotaibi F.E.
        • AlZhrani G.A.
        • Sabbagh A.J.
        • et al.
        Neurosurgical assessment of metrics including judgment and dexterity using the virtual reality simulator NeuroTouch (NAJD Metrics).
        Surg Innov. 2015;
        • Azarnoush H.
        • Alzhrani G.
        • Winkler-Schwartz A.
        • et al.
        Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection.
        Int J Comput Assist Radiol Surg. 2015; 10: 603-618
        • Ferroli P.
        • Tringali G.
        • Acerbi F.
        • et al.
        Advanced 3-dimensional planning in neurosurgery.
        Neurosurgery. 2013; 72: 54-62
        • Clarke D.B.
        • D’Arcy R.C.
        • Delorme S.
        • et al.
        Virtual reality simulator: demonstrated use in neurosurgical oncology.
        Surg Innov. 2013; 20: 190-197
        • Nakamoto M.U.
        • Ukimura O.
        • Gill I.S.
        • et al.
        Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker.
        in: Medical imaging and augmented reality 4th International Workshop. Springer-Verlag, Heidelberg, Germany2008: 359-366
        • Teber D.G.
        • Guven S.
        • Simpfendorfer T.
        • et al.
        Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results.
        Eur Urol. 2009; 56: 332-338
        • Zang X.Y.
        • Yang J.
        • Weng D.
        Augmented reality based surgery navigation system.
        SPIE Med Imag. 2009;
        • Caversaccio M.
        • Garcia Giraldez J.
        • Thoranaghatte R.
        • et al.
        Augmented reality endoscopic system (ARES): preliminary results.
        Rhinology. 2008; 46: 156-158
        • Thoranaghatte R.U.
        • Giraldez J.G.
        • Zheng G.
        Landmark based augmented reality endoscope system for sinus and skull-base surgeries.
        Conf Proc IEEE Eng Med Biol Soc. 2008; 2008: 74-77
        • Alcaniz Raya M.
        • Varvaro Marcinek H.
        • Martinez Saez J.M.
        • et al.
        Mixed reality for neurosurgery: a novel prototype.
        Stud Health Technol Inform. 2003; 94: 11-15
        • Besharati Tabrizi L.
        • Mahvash M.
        Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.
        J Neurosurg. 2015; 1–6
        • Cabrilo I.
        • Sarrafzadeh A.
        • Bijlenga P.
        • et al.
        Augmented reality-assisted skull base surgery.
        Neurochirurgie. 2014; 60: 304-306
        • Inoue D.
        • Cho B.
        • Mori M.
        • et al.
        Preliminary study on the clinical application of augmented reality neuronavigation.
        J Neurol Surg A Cent Eur Neurosurg. 2013; 74: 71-76
        • Azuma R.B.
        • Baillot Y.
        • Behringer R.
        • et al.
        Recent advances in augmented reality.
        IEEE Comput Graph Appl. 2001; 21: 34-47
        • Nicolau S.
        • Soler L.
        • Mutter D.
        Augmented reality in laproscocpic surgical oncology.
        Surg Oncol. 2011; 20: 189-201
        • Aschke M.W.
        • Wirtz C.R.
        • Raczkowsky J.
        Augmented reality in operating microscopes for neurosurgical interventions.
        IEEE EMBS Conf Neural Eng. 2003;
        • Edwards P.J.
        • Hawkes D.J.
        • Hill D.L.
        • et al.
        Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance.
        J Image Guid Surg. 1995; 1: 172-178
        • Kelly P.J.
        • Alker Jr., G.J.
        • Goerss S.
        Computer-assisted stereotactic microsurgery for the treatment of intracranial neoplasms.
        Neurosurgery. 1982; 10: 324-331
        • Worn H.
        • Aschke M.
        • Kahrs L.A.
        New augmented reality and robotic based methods for head-surgery.
        Int J Med Robot. 2005; 1: 49-56
        • Cabrilo I.
        • Bijlenga P.
        • Schaller K.
        Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations.
        Acta Neurochir. 2014; 156: 1769-1774
        • Cabrilo I.
        • Bijlenga P.
        • Schaller K.
        Augmented reality in the surgery of cerebral aneurysms: a technical report.
        Neurosurgery. 2014; 10 ([discussion 60–1]): 252-260
        • Deng W.
        • Li F.
        • Wang M.
        • et al.
        Easy-to-use augmented reality neuronavigation using a wireless tablet PC.
        Stereotact Funct Neurosurg. 2014; 92: 17-24
        • Kockro R.T.
        • Tsai Y.T.
        • Ng I
        • et al.
        Dex-ray: augmented reality neurosurgical navigation with a handheld video probe.
        Neurosurgery. 2009; 65: 795-807
        • Low D.
        • Lee C.K.
        • Dip L.L.
        • et al.
        Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas.
        Br J Neurosurg. 2010; 24: 69-74
        • Yc Goha K.
        Virtual reality applications in neurosurgery.
        Conf Proc IEEE Eng Med Biol Soc. 2005; 4: 4171-4173
        • Bambakidis N.C.
        • Selman W.R.
        • Sloan A.E.
        Surgical rehearsal platform: potential uses in microsurgery.
        Neurosurgery. 2013; 73: 122-126
        • Long D.M.
        Neurosurgical training at present and in the next century.
        Acta Neurochir Suppl. 1997; 69: 58-64
        • Reznick R.K.
        • MacRae H.
        Teaching surgical skills – changes in the wind.
        N Engl J Med. 2006; 355: 2664-2669
        • Willaert W.I.
        • Aggarwal R.
        • Nestel D.F.
        • et al.
        Patient-specific simulation for endovascular procedures: qualitative evaluation of the development process.
        Int J Med Robot. 2010; 6: 202-210
        • Gurusamy K.S.
        • Aggarwal R.
        • Palanivelu L.
        • et al.
        Virtual reality training for surgical trainees in laparoscopic surgery.
        Cochrane Database Syst Rev. 2009; (CD006575)