Advertisement

Focused ultrasound to transiently disrupt the blood brain barrier

Published:February 13, 2016DOI:https://doi.org/10.1016/j.jocn.2015.12.011

      Highlights

      • First application of MRI-guided Focused Ultrasound to disrupt the BBB on a human patient.
      • The technique is non-invasive, transient and allows BBB disruption to focal regions of interest.
      • Provides potential for a new technique of targeted drug delivery to previously inaccessible brain tissue.
      To read this article in full you will need to make a payment

      References

        • Radovini N.N.
        World first: blood–brain barrier opened non-invasively to deliver chemotherapy – Sunnybrook Hospital.
        Press Release, Sunnybrook Canada2015
        • Pardridge W.M.
        Blood–brain barrier delivery.
        Drug Discov Today. 2007; 12: 54-61https://doi.org/10.1016/j.drudis.2006.10.013
        • Hall W.A.
        • Sherr G.T.
        Convection-enhanced delivery: targeted toxin treatment of malignant glioma.
        Neurosurg Focus. 2006; 20: E10
        • Debinski W.
        • Tatter S.B.
        Convection-enhanced delivery for the treatment of brain tumors.
        Expert Rev Neurother. 2009; 9: 1519-1527https://doi.org/10.1586/ern.09.99
        • Johnsen K.B.
        • Gudbergsson J.M.
        • Skov M.N.
        • et al.
        A comprehensive overview of exosomes as drug delivery vehicles – endogenous nanocarriers for targeted cancer therapy.
        Biochim Biophys Acta. 2014; 1846: 75-87https://doi.org/10.1016/j.bbcan.2014.04.005
        • Rahman M.
        • Hoh B.
        • Kohler N.
        • et al.
        The future of glioma treatment. Stem cells, nanotechnology and personalized medicine.
        Future Oncol. 2012; 8: 1149-1156https://doi.org/10.2217/fon.12.111
        • Pardridge W.M.
        Drug and gene targeting to the brain with molecular Trojan horses.
        Nat Rev Drug Discov. 2002; 1: 131-139https://doi.org/10.1038/nrd725
        • Kroll R.A.
        • Neuwelt E.A.
        Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means.
        Neurosurgery. 1998; 42 ([discussion 1099–100]): 1083-1099
        • Doolittle N.D.
        • Miner M.E.
        • Hall W.A.
        • et al.
        Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood–brain barrier for the treatment of patients with malignant brain tumors.
        Cancer. 2000; 88: 637-647
        • Maeda H.
        The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.
        Adv Enzyme Regul. 2001; 41: 189-207
        • Eichler A.F.
        • Chung E.
        • Kodack D.P.
        • et al.
        The biology of brain metastases-translation to new therapies.
        Nat Rev Clin Oncol. 2011; 8: 344-356https://doi.org/10.1038/nrclinonc.2011.58
        • Chamberlain M.C.
        Radiographic patterns of relapse in glioblastoma.
        J Neurooncol. 2011; 101: 319-323https://doi.org/10.1007/s11060-010-0251-4
        • Dobelbower M.C.
        • Burnett Iii O.L.
        • Nordal R.A.
        • et al.
        Patterns of failure for glioblastoma multiforme following concurrent radiation and temozolomide.
        J Med Imaging Radiat Oncol. 2011; 55: 77-81https://doi.org/10.1111/j.1754-9485.2010.02232.x
        • Minniti G.
        • Amelio D.
        • Amichetti M.
        • et al.
        Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide.
        Radiother Oncol. 2010; 97: 377-381https://doi.org/10.1016/j.radonc.2010.08.020
        • Polina L.
        • Nyapathy V.
        • Mishra A.
        • et al.
        Noninvasive treatment of focal adenomyosis with MR-guided focused ultrasound in two patients.
        Indian J Radiol Imaging. 2012; 22: 93-97https://doi.org/10.4103/0971-3026.101078
        • Trumm C.G.
        • Stahl R.
        • Clevert D.A.
        • et al.
        Magnetic resonance imaging-guided focused ultrasound treatment of symptomatic uterine fibroids: impact of technology advancement on ablation volumes in 115 patients.
        Invest Radiol. 2013; 48: 359-365https://doi.org/10.1097/RLI.0b013e3182806904
        • Patel A.
        • Malik M.
        • Britten J.
        • et al.
        Alternative therapies in management of leiomyomas.
        Fertil Steril. 2014; 102: 649-655https://doi.org/10.1016/j.fertnstert.2014.07.008
        • Hurwitz M.D.
        • Ghanouni P.
        • Kanaev S.V.
        • et al.
        Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results.
        J Natl Cancer Inst. 2014; 106: dju082https://doi.org/10.1093/jnci/dju082
        • Schmitz A.C.
        • Gianfelice D.
        • Daniel B.L.
        • et al.
        Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions.
        Eur Radiol. 2008; 18: 1431-1441https://doi.org/10.1007/s00330-008-0906-0
        • Napoli A.
        • Anzidei M.
        • De Nunzio C.
        • et al.
        Real-time magnetic resonance-guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience.
        Eur Urol. 2013; 63: 395-398https://doi.org/10.1016/j.eururo.2012.11.002
        • Clement G.T.
        • White P.J.
        • King R.L.
        • et al.
        A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy.
        J Ultrasound Med. 2005; 24: 1117-1125
        • Ghanouni P.
        • Pauly K.B.
        • Elias W.J.
        • et al.
        Transcranial MRI-guided focused ultrasound: a review of the technologic and neurologic applications.
        Am J Roentgenol. 2015; 205: 150-159https://doi.org/10.2214/AJR.14.13632
        • Galiana G.
        • Branca R.T.
        • Jenista E.R.
        • et al.
        Accurate temperature imaging based on intermolecular coherences in magnetic resonance.
        Science. 2008; 322: 421-424https://doi.org/10.1126/science.1163242
        • Rieke V.
        • Butts Pauly K.
        MR thermometry.
        J Magn Reson Imaging. 2008; 27: 376-390https://doi.org/10.1002/jmri.21265
        • McDannold N.
        • Maier S.E.
        Magnetic resonance acoustic radiation force imaging.
        Med Phys. 2008; 35: 3748-3758https://doi.org/10.1118/1.2956712
        • Kaye E.A.
        • Pauly K.B.
        Adapting MRI acoustic radiation force imaging for in vivo human brain focused ultrasound applications.
        Magn Reson Med. 2013; 69: 724-733https://doi.org/10.1002/mrm.24308
        • Kiyatkin E.A.
        • Sharma H.S.
        Permeability of the blood–brain barrier depends on brain temperature.
        Neuroscience. 2009; 161: 926-939https://doi.org/10.1016/j.neuroscience.2009.04.004
        • Heimburger R.F.
        Ultrasound augmentation of central nervous system tumor therapy.
        Indiana Med. 1985; 78: 469-476
        • Meyers R.
        • Fry W.J.
        • Fry F.J.
        • et al.
        Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders.
        J Neurosurg. 1959; 16: 32-54https://doi.org/10.3171/jns.1959.16.1.0032
        • Jolesz F.A.
        • McDannold N.J.
        Magnetic resonance-guided focused ultrasound: a new technology for clinical neurosciences.
        Neurol Clin. 2014; 32: 253-269https://doi.org/10.1016/j.ncl.2013.07.008
        • Martin E.
        • Jeanmonod D.
        • Morel A.
        • et al.
        High-intensity focused ultrasound for noninvasive functional neurosurgery.
        Ann Neurol. 2009; 66: 858-861https://doi.org/10.1002/ana.21801
        • Jeanmonod D.
        • Werner B.
        • Morel A.
        • et al.
        Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain.
        Neurosurg Focus. 2012; 32: E1https://doi.org/10.3171/2011.10.FOCUS11248
        • Elias W.J.
        • Huss D.
        • Voss T.
        • et al.
        A pilot study of focused ultrasound thalamotomy for essential tremor.
        N Engl J Med. 2013; 369: 640-648https://doi.org/10.1056/NEJMoa1300962
        • Magara A.
        • Bühler R.
        • Moser D.
        • et al.
        First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease.
        J Ther Ultrasound. 2014; 2: 11https://doi.org/10.1186/2050-5736-2-11
        • McDannold N.
        • Clement G.T.
        • Black P.
        • et al.
        Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients.
        Neurosurgery. 2010; 66 ([discussion 332]): 323-332https://doi.org/10.1227/01.NEU.0000360379.95800.2F
        • Aryal M.
        • Arvanitis C.D.
        • Alexander P.M.
        • et al.
        Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system.
        Adv Drug Deliv Rev. 2014; 72: 94-109https://doi.org/10.1016/j.addr.2014.01.008
        • Sheikov N.
        • McDannold N.
        • Sharma S.
        • et al.
        Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium.
        Ultrasound Med Biol. 2008; 34: 1093-1104https://doi.org/10.1016/j.ultrasmedbio.2007.12.015
        • Shang X.
        • Wang P.
        • Liu Y.
        • et al.
        Mechanism of low-frequency ultrasound in opening blood-tumor barrier by tight junction.
        J Mol Neurosci. 2011; 43: 364-369https://doi.org/10.1007/s12031-010-9451-9
        • Sheikov N.
        • McDannold N.
        • Jolesz F.
        • et al.
        Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier.
        Ultrasound Med Biol. 2006; 32: 1399-1409https://doi.org/10.1016/j.ultrasmedbio.2006.05.015
        • Kinoshita M.
        • McDannold N.
        • Jolesz F.A.
        • et al.
        Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound.
        Biochem Biophys Res Commun. 2006; 340: 1085-1090https://doi.org/10.1016/j.bbrc.2005.12.112
        • Treat L.H.
        • McDannold N.
        • Vykhodtseva N.
        • et al.
        Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound.
        Int J Cancer. 2007; 121: 901-907https://doi.org/10.1002/ijc.22732
        • Xie F.
        • Boska M.D.
        • Lof J.
        • et al.
        Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model.
        Ultrasound Med Biol. 2008; 34: 2028-2034https://doi.org/10.1016/j.ultrasmedbio.2008.05.004
        • Liu H.L.
        • Hua M.Y.
        • Yang H.W.
        • et al.
        Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain.
        Proc Natl Acad Sci USA. 2010; 107: 15205-15210https://doi.org/10.1073/pnas.1003388107
        • Kinoshita M.
        • McDannold N.
        • Jolesz F.A.
        • et al.
        Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption.
        Proc Natl Acad Sci USA. 2006; 103: 11719-11723https://doi.org/10.1073/pnas.0604318103
        • Jordão J.F.
        • Ayala-Grosso C.A.
        • Markham K.
        • et al.
        Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease.
        PLoS ONE. 2010; 5: e10549https://doi.org/10.1371/journal.pone.0010549
        • McDannold N.
        • Arvanitis C.D.
        • Vykhodtseva N.
        • et al.
        Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.
        Cancer Res. 2012; 72: 3652-3663https://doi.org/10.1158/0008-5472.CAN-12-0128
        • Liu H.L.
        • Chen H.W.
        • Kuo Z.H.
        • et al.
        Design and experimental evaluations of a low-frequency hemispherical ultrasound phased-array system for transcranial blood–brain barrier disruption.
        IEEE Trans Biomed Eng. 2008; 55: 2407-2416https://doi.org/10.1109/TBME.2008.925697
        • Stan A.C.
        • Casares S.
        • Radu D.
        • et al.
        Doxorubicin-induced cell death in highly invasive human gliomas.
        Anticancer Res. 1999; 19: 941-950
        • Voulgaris S.
        • Partheni M.
        • Karamouzis M.
        • et al.
        Intratumoral doxorubicin in patients with malignant brain gliomas.
        Am J Clin Oncol. 2002; 25: 60-64
        • Walter K.A.
        • Tamargo R.J.
        • Olivi A.
        • et al.
        Intratumoral chemotherapy.
        Neurosurgery. 1995; 37: 1128-1145
        • Ananda S.
        • Nowak A.K.
        • Cher L.
        • et al.
        Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy.
        J Clin Neurosci. 2011; 18: 1444-1448https://doi.org/10.1016/j.jocn.2011.02.026
        • Lockman P.R.
        • Mittapalli R.K.
        • Taskar K.S.
        • et al.
        Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer.
        Clin Cancer Res. 2010; 16: 5664-5678https://doi.org/10.1158/1078-0432.CCR-10-1564
        • Yang F.Y.
        • Wong T.T.
        • Teng M.C.
        • et al.
        Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme.
        J Control Release. 2012; 160: 652-658https://doi.org/10.1016/j.jconrel.2012.02.023
        • Kovacs Z.
        • Werner B.
        • Rassi A.
        • et al.
        Prolonged survival upon ultrasound-enhanced doxorubicin delivery in two syngenic glioblastoma mouse models.
        J Control Release. 2014; 187: 74-82https://doi.org/10.1016/j.jconrel.2014.05.033
        • Aryal M.
        • Vykhodtseva N.
        • Zhang Y.Z.
        • et al.
        Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood–brain barriers improve outcomes in a rat glioma model.
        J Control Release. 2013; 169: 103-111https://doi.org/10.1016/j.jconrel.2013.04.007
        • Aryal M.
        • Vykhodtseva N.
        • Zhang Y.Z.
        • et al.
        Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood–brain barrier disruption: a safety study.
        J Control Release. 2015; 204: 60-69https://doi.org/10.1016/j.jconrel.2015.02.033