The human central nervous system has limited capacity for regeneration following damage
from disease or trauma. Stem cell therapy provides an approach to overcome this clinical
challenge. Currently, there is poor understanding of how stem cell therapy may improve
neurological outcome. The parsimonious explanation is that stem cells replace lost
neural cells, however, more complicated mechanisms may exist. A bystander mechanism
was recently demonstrated whereby immuno-modulation of an inflammatory plaque was
induced by implanted neural stem cells. We hypothesized that implanted stem cells
produce factors that induce neuroplastic changes within a host nervous system. To
test this notion, we have adapted the avian model system to investigate stem cell
mediated axonal development, using a human-chick xeno-transplantation paradigm. We
found that transplanted human dental pulp stem cells, derived from 3rd molar human
teeth, induced neuroplastic changes to a host avian trigeminal ganglion following
transplantation in ovo. Furthermore, we showed that CXCL12/CXCR4 interactions, which
belong to the chemokine family and known to play a critical role during inflammation
and wound healing, in part, contributed to this activity. We propose that this transplantation
model is a useful and sensitive method with which to investigate the cellular and
molecular mechanisms of neuroplasticity induced by different human stem cell populations.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Clinical NeuroscienceAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
Article info
Identification
Copyright
© 2008 Published by Elsevier Inc.