Advertisement

Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke

      Abstract

      Bone marrow-derived mesenchymal stem cells (MSCs) have great potential as therapeutic agents in stroke management, since they are easily accessible and can be rapidly expanded ex vivo for autologous transplantation. Increasing evidence suggests that bone marrow cells migrate throughout the brain and differentiate into neurons and glial cells. Both non-human and human MSCs have been used to treat stroke in murine models with satisfactory results. Several factors, such as transdifferentiation, induction of neurogenesis and angiogenesis, neuroprotection, and activation of endogenous neurorestorative processes, contribute to the benefits of MSCs in the ischemic brain. Many variables, including types of MSCs, cell dose, timing of treatment, route of cell delivery, and characteristics of stroke patients, influence the efficacy of MSC treatment of stroke. Although the first trials of autologous MSC therapy in stroke patients showed promising results, the optimal approach for different clinical settings has yet to be determined. The fundamental properties of MSCs and their potential short-term and long-term toxicities also need to be determined before moving forward to use of these cells in clinical practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chen J.
        • Chopp M.
        Neurorestorative treatment of stroke: cell and pharmacological approaches.
        NeuroRx. 2006; 3: 466-473
        • Dezawa M.
        Insights into autotransplantation: the unexpected discovery of specific induction systems in bone marrow stromal cells.
        Cell Mol Life Sci. 2006; 63: 2764-2772
        • Krabbe C.
        • Zimmer J.
        • Meyer M.
        Neural transdifferentiation of mesenchymal stem cells – a critical review.
        APMIS. 2005; 113: 831-844
        • Beresford J.N.
        • Bennett J.H.
        • Devlin C.
        • et al.
        Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures.
        J Cell Sci. 1992; 102: 341-351
        • Wakitani S.
        • Saito T.
        • Caplan A.I.
        Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.
        Muscle Nerve. 1995; 18: 1417-1426
        • Dennis J.E.
        • Haynesworth S.E.
        • Young R.G.
        • et al.
        Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression.
        Cell Transplant. 1992; 1: 23-32
        • Liechty K.W.
        • MacKenzie T.C.
        • Shaaban A.F.
        • et al.
        Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.
        Nat Med. 2000; 6: 1282-1286
        • Zhao L.R.
        • Duan W.M.
        • Reyes M.
        • et al.
        Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats.
        Exp Neurol. 2002; 174: 11-20
        • Wislet-Gendebien S.
        • Bruyere F.
        • Hans G.
        • et al.
        Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4.
        BMC Neurosci. 2004; 5: 33
        • Kopen G.C.
        • Prockop D.J.
        • Phinney D.G.
        Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains.
        Proc Natl Acad Sci USA. 1999; 96: 1016-1071
        • Hickey W.F.
        Leukocyte traffic in the central nervous system: the participants and their roles.
        Semin Immunol. 1999; 11: 125-137
        • Hickey W.F.
        • Hsu B.L.
        • Kimura H.
        T-lymphocyte entry into the central nervous system.
        J Neurosci Res. 1991; 28: 254-260
        • Knopf P.M.
        • Harling-Berg C.J.
        • Cserr H.F.
        • et al.
        Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells.
        J Immunol. 1998; 161: 692-701
        • Williams K.C.
        • Hickey W.F.
        Traffic of hematogenous cells through the central nervous system.
        Curr Top Microbiol Immunol. 1995; 202: 221-245
        • Mezey E.
        • Chandross K.J.
        • Harta G.
        • et al.
        Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow.
        Science. 2000; 290: 1779-1782
        • Eglitis M.A.
        • Mezey E.
        Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice.
        Proc Natl Acad Sci USA. 1997; 94: 4080-4085
        • Azizi S.A.
        • Stokes D.
        • Augelli B.J.
        • et al.
        Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats – similarities to astrocyte grafts.
        Proc Natl Acad Sci USA. 1998; 95: 3908-3913
        • Mezey E.
        • Chandross K.J.
        Bone marrow: a possible alternative source of cells in the adult nervous system.
        Eur J Pharmacol. 2000; 405: 297-302
        • Mezey E.
        • Key S.
        • Vogelsang G.
        • et al.
        Transplanted bone marrow generates new neurons in human brains.
        Proc Natl Acad Sci USA. 2003; 100: 1364-1369
        • Terada N.
        • Hamazaki T.
        • et al.
        Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion.
        Nature. 2002; 416: 542-545
        • Alvarez-Dolado M.
        • Pardal R.
        • Garcia-Verdugo J.M.
        • et al.
        Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.
        Nature. 2003; 425: 968-973
        • Lu P.
        • Blesch A.
        • Tuszynski M.H.
        Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact?.
        J Neurosci Res. 2004; 77: 174-191
        • Crain B.J.
        • Tran S.D.
        • Mezey E.
        Transplanted human bone marrow cells generate new brain cells.
        J Neurol Sci. 2005; 233: 121-123
        • Sanchez-Ramos J.
        • Song S.
        • Cardozo-Pelaez F.
        • et al.
        Adult bone marrow stromal cells differentiate into neural cells in vitro.
        Exp Neurol. 2000; 164: 247-256
        • Li Y.
        • Chopp M.
        • Chen J.
        • et al.
        Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice.
        J Cereb Blood Flow Metab. 2000; 20: 1311-1319
        • Brazelton T.R.
        • Rossi F.M.
        • Keshet G.I.
        • et al.
        From marrow to brain: expression of neuronal phenotypes in adult mice.
        Science. 2000; 290: 1775-1779
        • Borlongan C.V.
        • Lind J.G.
        • Dillon-Carter O.
        • et al.
        Intracerebral xenografts of mouse bone marrow cells in adult rats facilitate restoration of cerebral blood flow and blood-brain barrier.
        Brain Res. 2004; 1009: 26-33
        • Borlongan C.V.
        • Lind J.G.
        • Dillon-Carter O.
        • et al.
        Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats.
        Brain Res. 2004; 1010: 108-116
        • Willing A.E.
        • Lixian J.
        • Milliken M.
        • et al.
        Intravenous versus intrastriatal cord blood administration in a rodent model of stroke.
        J Neurosci Res. 2003; 73: 296-307
        • Eglitis M.A.
        • Dawson D.
        • Park K.W.
        • et al.
        Targeting of marrow-derived astrocytes to the ischemic brain.
        Neuroreport. 1999; 10: 1289-1292
        • Chen J.
        • Li Y.
        • Chopp M.
        Intracerebral transplantation of bone marrow with BDNF after MCAo in rat.
        Neuropharmacology. 2000; 39: 711-716
        • Chen J.
        • Li Y.
        • Wang L.
        • et al.
        Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats.
        J Neurol Sci. 2001; 189: 49-57
        • Lee J.
        • Kuroda S.
        • Shichinohe H.
        • et al.
        Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice.
        Neuropathology. 2003; 23: 169-180
        • Yano S.
        • Kuroda S.
        • Shichinohe H.
        • et al.
        Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct?--A double labeling study.
        Brain Res. 2005; 1065: 60-67
        • Shichinohe H.
        • Kuroda S.
        • Yano S.
        • et al.
        Improved expression of gamma-aminobutyric acid receptor in mice with cerebral infarct and transplanted bone marrow stromal cells: an autoradiographic and histologic analysis.
        J Nucl Med. 2006; 47: 486-491
        • Kurozumi K.
        • Nakamura K.
        • Tamiya T.
        • et al.
        BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model.
        Mol Ther. 2004; 9: 189-197
        • Ikeda N.
        • Nonoguchi N.
        • Zhao M.Z.
        • et al.
        Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats.
        Stroke. 2005; 36: 2725-2730
        • Zhao M.Z.
        • Nonoguchi N.
        • Ikeda N.
        • et al.
        Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector.
        J Cereb Blood Flow Metab. 2006; 26: 1176-1188
        • Li Y.
        • Chen J.
        • Wang L.
        • et al.
        Treatment of stroke in rat with intracarotid administration of marrow stromal cells.
        Neurology. 2001; 56: 1666-1672
        • Shen L.H.
        • Li Y.
        • Chen J.
        • et al.
        Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke.
        Neuroscience. 2006; 137: 393-399
        • Chopp M.
        • Li Y.
        Treatment of neural injury with marrow stromal cells.
        Lancet Neurol. 2002; 1: 92-100
        • Chen J.
        • Li Y.
        • Katakowski M.
        • et al.
        Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat.
        J Neurosci Res. 2003; 73: 778-786
        • Chen J.
        • Li Y.
        • Wang L.
        • et al.
        Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats.
        Stroke. 2001; 32: 1005-1011
        • Li Y.
        • Chen J.
        • Zhang C.L.
        • et al.
        Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells.
        Glia. 2005; 49: 407-417
        • Shen L.H.
        • Li Y.
        • Chen J.
        • et al.
        Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke.
        J Cereb Blood Flow Metab. 2007; 27: 6-13
        • Cui X.
        • Chen J.
        • Zacharek A.
        • et al.
        Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke.
        Stem Cells. 2007; 25: 2777-2785
        • Li Y.
        • Chen J.
        • Chen X.G.
        • et al.
        Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery.
        Neurology. 2002; 59: 514-523
        • Chen J.
        • Zhang Z.G.
        • Li Y.
        • et al.
        Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats.
        Circ Res. 2003; 92: 692-699
        • Zhang J.
        • Li Y.
        • Chen J.
        • et al.
        Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells.
        Brain Res. 2004; 1030: 19-27
        • Liu H.
        • Honmou O.
        • Harada K.
        • et al.
        Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia.
        Brain. 2006; 129: 2734-2745
        • Kinnaird T.
        • Stabile E.
        • Burnett M.S.
        • et al.
        Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.
        Circulation. 2004; 109: 1543-1549
        • Kondziolka D.
        • Wechsler L.
        • Goldstein S.
        • et al.
        Transplantation of cultured human neuronal cells for patients with stroke.
        Neurology. 2000; 55: 565-569
        • Stilley C.S.
        • Ryan C.M.
        • Kondziolka D.
        • et al.
        Changes in cognitive function after neuronal cell transplantation for basal ganglia stroke.
        Neurology. 2004; 63: 1320-1322
        • Kondziolka D.
        • Steinberg G.K.
        • Wechsler L.
        • et al.
        Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial.
        J Neurosurg. 2005; 103: 38-45
        • Bacigaluppi M.
        • Pluchino S.
        • Martino G.
        • Kilic E.
        • Hermann D.M.
        Neural stem/precursor cells for the treatment of ischemic stroke.
        J Neurol Sci. 2008; 265: 73-77
        • Bang O.Y.
        • Lee J.S.
        • Lee P.H.
        • et al.
        Autologous mesenchymal stem cell transplantation in stroke patients.
        Ann Neurol. 2005; 57: 874-882
        • De Keyser J.
        Autologous mesenchymal stem cell transplantation in stroke patients.
        Ann Neurol. 2005; 58 (author reply 4–5): 653-654
        • Woodbury D.
        • Schwarz E.J.
        • Prockop D.J.
        • et al.
        Adult rat and human bone marrow stromal cells differentiate into neurons.
        J Neurosci Res. 2000; 61: 364-370
        • Deng W.
        • Obrocka M.
        • Fischer I.
        • et al.
        In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP.
        Biochem Biophys Res Commun. 2001; 282: 148-152
        • Wislet-Gendebien S.
        • Hans G.
        • Leprince P.
        • et al.
        Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype.
        Stem Cells. 2005; 23: 392-402
        • Chen X.
        • Li Y.
        • Wang L.
        • et al.
        Ischemic rat brain extracts induce human marrow stromal cell growth factor production.
        Neuropathology. 2002; 22: 275-279
        • Li Y.
        • Chen J.
        • Chopp M.
        Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats.
        J Neurol Sci. 2002; 193: 137-146
        • Louissaint Jr., A.
        • Rao S.
        • Leventhal C.
        • et al.
        Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain.
        Neuron. 2002; 34: 945-960
        • Parr A.M.
        • Tator C.H.
        • Keating A.
        Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury.
        Bone Marrow Transpl. 2007; 40: 609-619
        • Kinnaird T.
        • Stabile E.
        • Burnett M.S.
        • et al.
        Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro arteriogenesis through paracrine mechanisms.
        Circ Res. 2004; 94: 678-685
        • Mahmood A.
        • Lu D.
        • Wang L.
        • et al.
        Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells.
        Neurosurg. 2001; 49: 1196-1203
        • Lu D.
        • Mahmood A.
        • Wang L.
        • et al.
        Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome.
        Neuroreport. 2001; 12: 559-563