Clinical study| Volume 12, ISSUE 4, P421-425, May 2005

Download started.


Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer’s disease


      Early detection of Alzheimer’s disease (AD) allows timely pharmacological and social interventions. Alteration in muscarinic receptor binding was evaluated with I-123 iodo-dexetimide (IDEX) in early clinical stage AD. We studied 11 mild AD patients (Folstein Minimental State Examination Score 24–27, Clinical Dementia Rating 0.5–1.0) and 10 age- and sex-matched normal subjects with SPECT brain imaging after injection of 185 MBq of IDEX and 750 MBq of 99mTc-HMPAO. Using a voxel based approach (Statistical Parametric Mapping (SPM99) software), a deficit in IDEX binding was found in the posterior cingulate cortex in the mild AD group with p (corrected) = 0.06 for the most significant voxel and p = 0.0003 for the voxel cluster. Region of interest (ROI) analysis confirmed the SPM99 results. SPM99 found no deficit in the HMPAO scans, suggesting that neither atrophy nor hypoperfusion were major factors in the reduced IDEX binding. This study provides further evidence of the involvement of the posterior cingulate region and of muscarinic receptors in early Alzheimer’s disease and suggests that this change may precede an alteration in blood flow.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Neuroscience
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Perry E.
        • Perry R.
        • Gibson R.
        • Blessed G.
        • Tomlinson B.
        A cholinergic connection between normal aging and senile dementia in the human hippocampus.
        Neurosci Lett. 1977; 6: 85-89
        • Davies P.
        • Maloney A.
        Selective loss of central cholinergic neurons in Alzheimer’s disease.
        Lancet. 1976; 11: 1403
        • White P.
        • Hiley C.R.
        • Goodhardt M.J.
        • et al.
        Neocortical cholinergic neurons in elderly people.
        Lancet. 1977; 1: 668-671
        • Araujo D.M.
        • Lapchak P.A.
        • Robitaille Y.
        • Gauthier S.
        • Quirion R.
        Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease.
        J Neurochem. 1988; 50: 1914-1923
        • Geula C.
        • Mesulam M.M.
        Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease.
        Cerebral Cortex. 1996; 6: 165-177
        • Geula C.
        • Mesulam M.M.
        • Saroff D.M.
        • Wu C.K.
        Relationship between plaques, tangles, and loss of cortical cholinergic fibers in Alzheimer disease.
        J Neuropathol Exp Neurol. 1998; 57: 63-75
        • Giannakopoulos P.
        • Hof P.R.
        • Giannakopoulos A.S.
        • Herrmann F.R.
        • Michel J.P.
        • Bouras C.
        Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of very old patients.
        Arch Neurol. 1995; 52: 1150-1159
        • Lang W.
        • Henke H.
        Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer type patients.
        Brain Res. 1983; 267: 271-280
        • Bowen D.M.
        • Allen S.J.
        • Benton J.S.
        • et al.
        Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease.
        J Neurochem. 1983; 41: 266-272
        • Vogt B.A.
        • Crino P.B.
        • Volicer L.
        Laminar alterations in gamma-aminobutyric acid A, muscarinic, and beta adrenoceptors and neuron degeneration in cingulate cortex in Alzheimer’s disease.
        J Neurochem. 1991; 57: 282-290
        • Vogt B.A.
        • Crino P.B.
        • Vogt L.J.
        Reorganization of cingulate cortex in Alzheimer’s disease: neuron loss, neuritic plaques, and muscarinic receptor binding.
        Cerebral Cortex. 1992; 2: 526-535
        • Li M.
        • Yasuda R.P.
        • Wall S.J.
        • Wellstein A.
        • Wolfe B.B.
        Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors.
        Mol Pharmacol. 1991; 40: 28-35
        • Quirion R.
        • Aubert I.
        • Lapchak P.A.
        • et al.
        Muscarinic receptor subtypes in human neurodegenerative disorders: focus on Alzheimer’s disease.
        Trends Pharmacol Sci. 1989; : 80-84
        • Quirion R.
        Cholinergic markers in Alzheimer disease and the autoregulation of acetylcholine release.
        J Psychiat Neurosci. 1993; 18: 226-234
        • Wilson A.
        • Dannals R.
        • Ravert H.
        • Frost J.
        • Wagner H.
        Synthesis and biological evaluation of 123I and 124I-iododexetimide, a potent muscarinic cholinergic receptor antagonist.
        J Med Chem. 1989; 32: 1057-1062
        • Boundy K.
        • Barnden L.
        • Rowe C.
        • et al.
        Human dosimetry and normal brain distribution of iodine-123-iododexetimide: a SPECT imaging agent for cholinergic muscarinic neuroreceptors.
        J Nucl Med. 1995; 36: 1332-1338
        • Claus J.J.
        • Dubois E.A.
        • Booij J.
        • et al.
        Demonstration of a reduction in muscarinic receptor binding in early Alzheimer’s disease using iodine-123 dexetimide single photon emission computed tomography.
        Eur J Nucl Med. 1997; 24: 602-608
        • Boundy K.
        • Rowe C.
        • Reid M.
        • et al.
        Comparison of cholinergic neuroreceptor SPECT with 123I-iododexetimide and Tc-99m HMPAO in the early diagnosis of Alzheimer’s disease.
        in: De Deyn P. Dierckx R. Alavi A. Pickut B. A textbook of SPECT in neurology and psychiatry. John Libbey, London1997: 19-26
        • Yoshida T.
        • Kuwabara Y.
        • Ichiya Y.
        • et al.
        Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C–N-methyl-4-piperidyl benzilate: comparison with cerebral blood flow and cerebral glucose metabolism.
        Ann Nucl Med. 1998; 12: 35-42
        • Holman B.L.
        • Gibson R.E.
        • Hill T.C.
        • Eckelman W.C.
        • Albert M.
        • Reba R.C.
        Muscarinic acetylcholine receptors in Alzheimer’s disease.
        JAMA. 1985; 254: 3063-3066
        • Wyper D.J.
        • Brown D.
        • Patterson J.
        • et al.
        Deficits in iodine-labelled 3-quinuclidinyl benzilate binding in relation to cerebral blood flow in patients with Alzheimer’s disease.
        Eur J Nucl Med. 1993; 20: 379-386
        • Weinberger D.R.
        • Gibson R.
        • Coppola R.
        • et al.
        The distribution of cerebral muscarinic receptors in-vivo in the patients with dementia.
        Arch Neurol. 1991; 48: 169-176
        • Weinberger D.R.
        • Jones D.
        • Reba R.C.
        • et al.
        A comparison of FDG PET and IQNB SPECT in normal subjects and in patients with dementia.
        J Neuropsychiatry Clin Neurosci. 1992; 4: 239-248
        • Brun A.
        • Englund E.
        Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading.
        Histopathology. 1981; 5: 549-564
        • Giannakopoulos P.
        • Hof P.
        • Michel J.
        • Guimon J.
        • Bouras C.
        Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts.
        Brain Res. 1997; 25: 217-245
        • Liu X.
        • Erikson C.
        • Brun A.
        Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration.
        Dementia. 1996; 7: 128-134
        • Minoshima S.
        • Foster N.L.
        • Kuhl D.E.
        Posterior cingulate cortex in Alzheimer’s disease [letter].
        Lancet. 1994; 344: 895
        • Reiman E.M.
        • Caselli R.J.
        • Yun L.S.
        • et al.
        Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E [see comments].
        N Engl J Med. 1996; 334: 752-758
        • Minoshima S.
        • Giordani B.
        • Berent S.
        • Frey K.A.
        • Foster N.L.
        • Kuhl D.E.
        Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease.
        Ann Neurol. 1997; 42: 85-94
        • Ishii K.
        • Sasaki M.
        • Yamaji S.
        • Sakamoto S.
        • Kitagaki H.
        • Mori E.
        Demonstration of decreased posterior cingulate perfusion in mild Alzheimer’s disease by means of H215O positron emission tomography.
        Eur J Nucl Med. 1997; 24: 670-673
        • Kumakura Y.
        • Momose T.
        • Oku S.
        • Ohtake T.
        • Nishikawa J.
        • Ohtomo K.
        Stepwise analysis of cerebral blood flow SPECT imaging on standard brain atlas with dementia of Alzheimer’s type.
        Kaku Igaku. 1998; 35: 843-848
        • Hirono N.
        • Mori E.
        • Ishii K.
        • et al.
        Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer’s disease.
        J Neurol Neurosurg Psychiatry. 1998; 64: 552-554
        • Johnson K.A.
        • Jones K.
        • Holman B.L.
        • et al.
        Preclinical prediction of Alzheimer’s disease using SPECT.
        Neurology. 1998; 50: 1563-1571
        • Salmon E.
        • Collette F.
        • Degueldre C.
        • Lemaire C.
        • Franck G.
        Voxel-based analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease.
        Human Brain Mapping. 2000; 10: 39-48
        • Ibanez V.
        • Pietrini P.
        • Alexander G.E.
        • et al.
        Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease.
        Neurology. 1998; 50: 1585-1593
        • Kogure D.
        • Matsuda H.
        • Ohnishi T.
        • et al.
        Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT.
        J Nucl Med. 2000; 41: 1155-1162
        • Small G.W.
        • Ercoli L.M.
        • Silverman D.H.
        • et al.
        Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease.
        Proc Natl Acad Sci USA. 2000; 97: 6037-6042
        • Vogt B.A.
        • Townes-Anderson E.
        • Burns D.L.
        Dissociated cingulate cortical neurons: morphology and muscarinic acetylcholine receptor binding properties.
        J Neurosci. 1987; 7: 959-971
        • Mash D.C.
        • White W.F.
        • Mesulam M.M.
        Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex.
        J Comp Neurol. 1988; 278: 265-274
        • Friston K.
        • Frith C.
        • Liddle P.
        • Frackowiak R.
        Comparing functional (PET) images: the assessment of significant change.
        J Cereb Blood Flow Metab. 1991; 11: 690-699
        • Friston K.
        • Worsley K.
        • Frackowiak R.
        • Mazziotta J.
        • Evans A.
        Assessing the significance of focal activations using their spatial extent.
        Human Brain Mapping. 1994; 1: 214-220
        • Ashburner J.
        • Neelin P.
        • Collins D.
        • Evans A.
        • Friston K.
        Incorporating prior knowledge into image registration.
        Neuroimage. 1997; 6: 344-352
        • Ashburner J.
        • Friston K.
        Nonlinear spatial normalization using basis functions.
        Human Brain Mapping. 1999; 7: 254-266
        • Talairach J.
        • Tournoux P.
        Co-planar stereotactic atlas of the human brain.
        Thieme, Stuttgart1988
        • Vogt B.A.
        • Vogt L.J.
        • Vrana K.E.
        • et al.
        Multivariate analysis of laminar patterns of neurodegeneration in posterior cingulate cortex in Alzheimer’s disease.
        Exp Neurol. 1998; 153: 8-22
        • Farr S.A.
        • Uezu K.
        • Creonte T.A.
        • Flood J.F.
        • Morley J.E.
        Modulation of memory processing in the cingulate cortex of mice.
        Pharmacol Biochem Behavior. 2000; 65: 363-368
        • Mash D.
        • Flynn D.
        • Potter L.
        Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation.
        Science. 1985; 228: 1115-1117
        • Boundy K.L.
        • Barnden L.R.
        • Rowe C.C.
        • et al.
        Human dosimetry and biodistribution of iodine-123-iododexetimide: a SPECT imaging agent for cholinergic muscarinic neuroreceptors.
        J Nucl Med. 1995; 36: 1332-1338